• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Fairmount College of Liberal Arts and Sciences
    • Mathematics, Statistics, and Physics
    • MATH Research Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Fairmount College of Liberal Arts and Sciences
    • Mathematics, Statistics, and Physics
    • MATH Research Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Elliptic equations: Single boundary measurements

    Date
    2017
    Author
    Isakov, Victor
    Metadata
    Show full item record
    Citation
    Isakov V. (2017) Chapter 4. Elliptic Equations: Single Boundary Measurements. In: Inverse Problems for Partial Differential Equations. Applied Mathematical Sciences, vol 127. Springer, Cham, pp.105-147.
    Abstract
    In this chapter we consider the elliptic second-order differential equation Au=finΩ,f=f0−∑j=1n∂jfjAu=finΩ,f=f0−∑j=1n∂jfj with the Dirichlet boundary data u=g0on∂Ω.u=g0on∂Ω. We assume that A = div(−a∇) + b ⋅ ∇ + c with bounded and measurable coefficients a (symmetric real-valued (n × n) matrix) and complex-valued b and c in L∞(Ω). Another assumption is that A is an elliptic operator; i.e., there is ɛ0 > 0 such that a(x)ξ ⋅ ξ ≥ ɛ0 | ξ | 2 for any vector ξ∈Rnξ∈Rn and any x ∈ Ω. Unless specified otherwise, we assume that Ω is a bounded domain in RnRn with the boundary of class C2. However, most of the results are valid for Lipschitz boundaries.
    Description
    Click on the DOI link to access the article (may not be free).
    URI
    http://dx.doi.org/10.1007/978-3-319-51658-5_4
    http://hdl.handle.net/10057/14440
    Collections
    • MATH Research Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV