Show simple item record

dc.contributor.authorFouque, Kevin Jeanne Dit
dc.contributor.authorGarabedian, Alyssa
dc.contributor.authorPorter, Jacob
dc.contributor.authorBaird, Matthew A.
dc.contributor.authorPang, Xueqin
dc.contributor.authorWilliams, Todd D.
dc.contributor.authorLi, Lingjun
dc.contributor.authorShvartsburg, Alexandre A.
dc.contributor.authorFernandez-Lima, Francisco
dc.identifier.citationKevin Jeanne Dit Fouque, Alyssa Garabedian, Jacob Porter, Matthew Baird, Xueqin Pang, Todd D. Williams, Lingjun Li, Alexandre Shvartsburg, and Francisco Fernandez-Lima. 2017. Fast and effective ion mobility-mass spectrometry separation of D-amino-acid-containing peptides. Analytical Chemistry 2017 89 (21), 11787-11794en_US
dc.descriptionClick on the DOI link to access the article (may not be free).en_US
dc.description.abstractDespite often minute concentrations in vivo, d-amino acid containing peptides (DAACPs) are crucial to many life processes. Standard proteomics protocols fail to detect them as d/l substitutions do not affect the peptide parent and fragment masses. The differences in fragment yields are often limited, obstructing the investigations of important but low abundance epimers in isomeric mixtures. Separation of d/l-peptides using ion mobility spectrometry (IMS) was impeded by small collision cross section differences (commonly similar to 1%). Here, broad baseline separation of DAACPs with up to similar to 30 residues employing trapped IMS with resolving power up to similar to 340, followed by time-of-flight mass spectrometry is demonstrated. The d/l-pairs coeluting in one charge state were resolved in another, and epimers merged as protonated species were resolved upon metalation, effectively turning the charge state and cationization mode into extra separation dimensions. Linear quantification down to 0.25% proved the utility of high resolution IMS-MS for real samples with large interisomeric dynamic range. Very close relative mobilities found for DAACP pairs using traveling-wave IMS (TWIMS) with different ion sources and faster IMS separations showed the transferability of results across IMS platforms. Fragmentation of epimers can enhance their identification and further improve detection and quantification limits, and we demonstrate the advantages of online mobility separated collision-induced dissociation (CID) followed by high resolution mass spectrometry (TIMS-CID-MS) for epimer analysis.en_US
dc.description.sponsorshipNIH (R00GM106414), NSF CAREER (CHE-1654274), and a Bruker Daltonics fellowship. The work at UW was funded by NIH (R01DK071801 and R56DK071801) and NSF (CHE-1710140 and CHE-1413596). The WSU authors are supported by NIH COBRE (P30 GM 110761) and NSF CAREER (CHE-1552640). Purchase of the Synapt instrument at KU was funded by NIH COBRE (P20 RR17708) and HRSA (C76HF16266).en_US
dc.publisherAmerican Chemical Societyen_US
dc.relation.ispartofseriesAnalytical Chemistry;v.89:no.21
dc.subjectContaining conus peptideen_US
dc.subjectFT-ICR MSen_US
dc.subjectAmphibian skinen_US
dc.subjectSize parametersen_US
dc.titleFast and effective ion mobility-mass spectrometry separation of D-amino-acid-containing peptidesen_US
dc.rights.holderCopyright © 2017, American Chemical Societyen_US

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record