• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Engineering
    • Electrical Engineering and Computer Science
    • EECS Faculty Scholarship
    • EECS Research Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Engineering
    • Electrical Engineering and Computer Science
    • EECS Faculty Scholarship
    • EECS Research Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Delay-based maximum power-weight scheduling with heavy-tailed traffic

    Date
    2017-08
    Author
    Lin, Shih-Chun
    Wang, Pu
    Akyildiz, Ian F.
    Luo, Min
    Metadata
    Show full item record
    Citation
    S. C. Lin, P. Wang, I. F. Akyildiz and M. Luo, "Delay-Based Maximum Power-Weight Scheduling With Heavy-Tailed Traffic," in IEEE/ACM Transactions on Networking, vol. 25, no. 4, pp. 2540-2555, Aug. 2017
    Abstract
    Heavy-tailed (HT) traffic (e.g., the Internet and multimedia traffic) fundamentally challenges the validity of classic scheduling algorithms, designed under conventional light-tailed (LT) assumptions. To address such a challenge, this paper investigates the impact of HT traffic on delay-based maximum weight scheduling (DMWS) algorithms, which have been proven to be throughput-optimal with enhanced delay performance under the LT traffic assumption. First, it is proven that the DMWS policy is not throughput-optimal anymore in the presence of hybrid LT and HT traffic by inducing unbounded queuing delay for LT traffic. Then, to solve the unbounded delay problem, a delay-based maximum power-weight scheduling (DMPWS) policy is proposed that makes scheduling decisions based on queuing delay raised to a certain power. It is shown by the fluid model analysis that DMPWS is throughput-optimal with respect to moment stability by admitting the largest set of traffic rates supportable by the network, while guaranteeing bounded queuing delay for LT traffic. Moreover, a variant of the DMPWS algorithm, namely the IU-DMPWS policy, is proposed, which operates with infrequent queue state updates. It is also shown that compared with DMPWS, the IU-DMPWS policy preserves the throughput optimality with much less signaling overhead, thus expediting its practical implementation.
    Description
    Click on the DOI link to access the article (may not be free).
    URI
    http://dx.doi.org/10.1109/TNET.2017.2706743
    http://hdl.handle.net/10057/14093
    Collections
    • EECS Research Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV