• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Engineering
    • Electrical Engineering and Computer Science
    • EECS Faculty Scholarship
    • EECS Research Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Engineering
    • Electrical Engineering and Computer Science
    • EECS Faculty Scholarship
    • EECS Research Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Bio-inspired robotic fish propelled by multiple artificial fins

    Date
    2017
    Author
    Hou, Piqi
    Ye, Zhihang
    Chen, Zheng
    Metadata
    Show full item record
    Citation
    Hou P, Ye Z, Chen Z. Bio-Inspired Robotic Fish Propelled by Multiple Artificial Fins. ASME. Dynamic Systems and Control Conference, Volume 1: Advances in Control Design Methods, Nonlinear and Optimal Control, Robotics, and Wind Energy Systems; Aerospace Applications; Assistive and Rehabilitation Robotics; Assistive Robotics; Battery and Oil and Gas Systems; Bioengineering Applications; Biomedical and Neural Systems Modeling, Diagnostics and Healthcare; Control and Monitoring of Vibratory Systems; Diagnostics and Detection; Energy Harvesting; Estimation and Identification; Fuel Cells/Energy Storage; Intelligent Transportation ():V001T03A005
    Abstract
    With advances in actuation and sensing, smart materials has drawn a growing attention from researchers in under water robotic fish. In this paper, a compact, noiseless, and untethered biomimetic robotic fish propelled by Ionic Polymer-Metal Composite (IPMC) actuators is developed. The robot fish employs two pectoral fins to generate steering and one caudal fin to generate main propulsion. A passive plastic fin is attached to the IPMC beam to enhance propulsion. With multiple IPMC fins, the fish is capable of 2D maneuvering. One small size programmable circuit board is designed for the 2D controllable fish. The Experimental results have shown that the forward-swimming speed can reach up to lcm/sec and the both left-turning and right turning speed can reach up to 2 rad/sec.
    Description
    Click on the DOI link to access the article (may not be free).
    URI
    http://dx.doi.org/10.1115/DSCC2016-9915
    http://hdl.handle.net/10057/13145
    Collections
    • EECS Research Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV