• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Engineering
    • Electrical Engineering and Computer Science
    • EECS Faculty Scholarship
    • EECS Research Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Engineering
    • Electrical Engineering and Computer Science
    • EECS Faculty Scholarship
    • EECS Research Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Auto-tuning tub-level control of blender in hydraulic fracturing

    Date
    2017
    Author
    Chen, Zheng
    Cargill, Leslie
    Naizer, Brent
    Metadata
    Show full item record
    Citation
    Chen Z, Cargill L, Naizer B. Auto-Tuning Tub-Level Control of Blender in Hydraulic Fracturing. ASME. Dynamic Systems and Control Conference, Volume 1: Advances in Control Design Methods, Nonlinear and Optimal Control, Robotics, and Wind Energy Systems; Aerospace Applications; Assistive and Rehabilitation Robotics; Assistive Robotics; Battery and Oil and Gas Systems; Bioengineering Applications; Biomedical and Neural Systems Modeling, Diagnostics and Healthcare; Control and Monitoring of Vibratory Systems; Diagnostics and Detection; Energy Harvesting; Estimation and Identification; Fuel Cells/Energy Storage; Intelligent Transportation ():V001T08A003
    Abstract
    Hydraulic fracturing is one of the key technologies for producing shale oil and gas. During hydraulic fracturing, a blender is used to mix sand with water and chemicals to obtain a fluidic mixture that will be pumped down a well to frack rocks. In order to achieve high-quality fracturing during a job, the blender needs to maintain its tub level as well as the density of the fluidic mixture. In this paper, an auto-tuning proportional-integral (PI) control is developed for the blender automation system to maintain the tub level of its fluidic mixture. The control system adopts a single-loop PI with gains that can be auto-tuned during a job. A relay feedback test is conducted for auto-tuning the PI gains online. The auto-tuning PI control has been successfully tested in a blender simulator. Experimental results have shown that the control performance was improved after auto-tuning and that the control system was adaptive to variation in system parameters.
    Description
    Click on the DOI link to access the item (may not be free).
    URI
    http://dx.doi.org/10.1115/DSCC2016-9848
    http://hdl.handle.net/10057/13144
    Collections
    • EECS Research Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV