• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Fairmount College of Liberal Arts and Sciences
    • Biological Sciences
    • BIO Faculty Scholarship
    • BIO Faculty Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Fairmount College of Liberal Arts and Sciences
    • Biological Sciences
    • BIO Faculty Scholarship
    • BIO Faculty Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Assessing wind and mammals as seed dispersal vectors in an invasive legume

    Date
    2017-02
    Author
    Zachary I., Quick
    Houseman, Gregory R.
    Buyuktahtakin, Esra
    Metadata
    Show full item record
    Citation
    Quick ZI, Houseman GR & Büyüktahtakin IE (2017). Assessing wind and mammals as seed dispersal vectors in an invasive legume. Weed Research 57, 35–43
    Abstract
    While some plants have modified seed structures to facilitate dispersal, many lack such specialised adaptations, making their mode of dispersal unclear. This can be particularly problematic for predicting shifts in species ranges or tracking the spread of invasive plants. As an example, the seed size and shape of the invasive legume, Lespedeza cuneata, suggest that wind and attachment to animals are not important for dispersal, yet populations can spread surprising distances within a few years. Using a series of experiments conducted in the laboratory and field, we tested wind and mammal fur as mediators of seed dispersal. To test wind dispersal, seed traps were arranged radially around a patch of L. cuneata and seeds were collected following dispersal. Attachment to mammal fur was tested by fitting pelts of a deer, coyote and raccoon to artificial torsos and determining seed retention in both the field and the laboratory. Laboratory trials also examined the influence of wet versus dry conditions. Our results showed that wind direction strongly influenced dispersal distance and seeds were readily dispersed by mammal fur. The number of seeds retained was species specific, depending on fur depth and mammal size, with seed retention increasing under wet conditions. Together, these results suggest that both wind and mammal fur contribute to the movement of L. cuneata across grasslands. Consequently, both dispersal vectors should be considered when designing and implementing control strategies.
    Description
    Click on the DOI link to access the article (may not be free).
    URI
    http://dx.doi.org/10.1111/wre.12232
    http://hdl.handle.net/10057/13008
    Collections
    • BIO Faculty Publications
    • ISME Research Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV