• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Fairmount College of Liberal Arts and Sciences
    • Biological Sciences
    • BIO Faculty Scholarship
    • BIO Faculty Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Fairmount College of Liberal Arts and Sciences
    • Biological Sciences
    • BIO Faculty Scholarship
    • BIO Faculty Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Differentiation of nerve-derived adult pluripotent stem cells into osteoblastic and endothelial cells

    Date
    2017-02
    Author
    Yang, Shang-You
    Strong, Nora M.
    Gong, Xuan
    Heggeness, Michael H.
    Metadata
    Show full item record
    Citation
    Yang, Shang-You; Strong, Nora; Gong, Xuan; Heggeness, Michael H. 2017. Differentiation of nerve-derived adult pluripotent stem cells into osteoblastic and endothelial cells. Spine Journal, vol. 17:no. 2:pp 277–281
    Abstract
    BACKGROUND CONTEXT: Stem cell-involved tissue engineering has gained dramatic attention as a therapeutic strategy for tissue regeneration including bone repair. However, the currently available possibilities to use embryonic stem cells and induced pluripotent stem cells (iPCs) face potential ethical issues, as well as risks of malignant transformation and immune rejection. Recently identified peripheral nerve-derived adult pluripotent stem cells (NEDAPS) that quickly proliferate after exposure to bone morphogenetic protein-2 (BMP-2) or nerve trauma and exhibit many embryonic stem cell characteristics may provide an attractive source cells for a variety of regenerative therapies. PURPOSE: The study aimed to examine the differentiation potential of the NEDAPS cells into osteoblastic cells and endothelial cells. STUDY DESIGN/SETTING: An in vitro investigation was undertaken to induce mouse NEDAPS cells into the phenotypes of osteoblastic and endothelial cells. METHODS: NEDAPS cells were isolated from low-dose BMP-2-exposed mouse sciatic nerves by collagenase and trypsin extraction. The cells were cultured in a stem cell maintenance medium, and the expression of KLF4, Sox2, c-Myc, and Oct4 before differentiation was confirmed. The cells were then subcultured in a complete osteogenic cell induction medium or endothelial cell growth medium, respectively, at 37 degrees C and 5% CO2 atmosphere. Histologic, morphologic, and molecular assessments were performed 7 days later. RESULTS: The cells propagated in complete osteogenic medium for 7 days showed strong staining for type I collagen and alkaline phosphatase, suggesting the structural and functional properties of the osteoblastic cells. Further, real-time polymerase chain reaction (RT-PCR) revealed a significant expression of the osteoblast markers osteocalcin, osteopontin, and type I collagen. Similarly, the cells in endothelial growth medium were successfully differentiated into cobblestone-shaped endothelial cells expressing vascular endothelial growth factor (VEGF) receptors Flk-1 and Flt-1 demonstrated by RT-PCR. CONCLUSIONS: NEDAPS cells are readily induced to osteoblastic and endothelial cells, suggesting therapeutic potential for bone repair and other regenerative therapies.
    Description
    Click on the DOI link to access the article (may not be free).
    URI
    http://dx.doi.org/10.1016/j.spinee.2016.10.002
    http://hdl.handle.net/10057/12924
    Collections
    • BIO Faculty Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV