• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Engineering
    • Industrial, Systems, and Manufacturing Engineering
    • ISME Faculty Scholarship
    • ISME Research Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Engineering
    • Industrial, Systems, and Manufacturing Engineering
    • ISME Faculty Scholarship
    • ISME Research Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Optimizing invasive species management: A mixed-integer linear programming approach

    Date
    2017-05-16
    Author
    Kibis, Eyyub Y.
    Buyuktahtakin, Esra
    Metadata
    Show full item record
    Citation
    Kibis, Eyyub Y.; Buyuktahtakin, I. Esra. 2017. Optimizing invasive species management: A mixed-integer linear programming approach. European Journal of Operational Research, vol. 259:no. 1, 16 May 2017:pp 308–321
    Abstract
    Controlling invasive species is a highly complex problem. The intricacy of the problem stems from the nonlinearity that is inherent in biological systems, consequently impeding researchers to obtain timely and cost-efficient treatment strategies over a planning horizon. To cope with the complexity of the invasive species problem, we develop a mixed-integer programming (MIP) model that handles the problem as a full dynamic optimization model and solves it to optimality for the first time. We demonstrate the applicability of the model on a case study of sericea (Lespedeza cuneata) infestation by optimizing a spatially explicit model on a heterogeneous 10-by-10 grid landscape for a seven-year time period. We evaluate the solution quality of five different linearization methods that are used to obtain the MIP model, We also compare the model with its mixed-integer nonlinear programming (MINLP) equivalent and nonlinear programming (NLP) relaxation in terms of solution quality. The computational superiority and realism of the proposed MIP model demonstrate that our model has the potential to constitute the basis for future decision-support tools in invasive species management.
    Description
    Click on the DOI link to access the article (may not be free).
    URI
    http://dx.doi.org/10.1016/j.ejor.2016.09.049
    http://hdl.handle.net/10057/12904
    Collections
    • ISME Research Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV