• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Graduate Student Research
    • ETD: Electronic Theses and Dissertations
    • Dissertations
    • View Item
    •   Shocker Open Access Repository Home
    • Graduate Student Research
    • ETD: Electronic Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Macrocyclic inhibitors of Norovirus 3CL protease

    View/Open
    Dissertation (3.982Mb)
    Date
    2016-07
    Author
    Weerawarna, Pathum M.
    Advisor
    Groutas, William C.
    Metadata
    Show full item record
    Abstract
    Noroviruses are the leading cause of foodborne illness in the U.S., accounting for >21 million infections per year and resulting in >70000 hospitalizations and nearly 800 deaths. Noroviruses are the primary cause of sporadic and epidemic acute gastroenteritis worldwide. Norovirus is an RNA virus that belongs to the Norovirus genus of the Caliciviridae family and carries a positive sense single stranded RNA genome (7.7 Kb). There are currently no vaccines or specific antiviral agents for combating infections caused by norovirus. The virus possesses a 3C-like cysteine protease (3CLpro) that is responsible for the majority of cleavages in the corresponding viral polyprotein into mature and functional proteins and is essential for virus replication. Thus, inhibitors of this enzyme are of potential therapeutic value. Inspection of crystal structures of norovirus 3CLpro with peptidyl inhibitors reveals that peptidyl inhibitors of norovirus 3CLpro bind to the enzyme via a network of backbone hydrogen bonds that mimic an antiparallel ?-sheet. The hydrogen bonding associated with an antiparallel ?-sheet is more feasible when an inhibitor (or substrate) binds to the active site of a protease in a ?-strand conformation. Macrocyclization of linear peptidyl inhibitors helps pre-organizing the macrocycle in a ? -strand conformation prior to binding to the enzyme active site. This approach results in the formation of a pre-organized and semi-rigid entity that displays the amino acid side chains in a well-defined vector relationship for optimal binding and enhances the binding affinity of the inhibitor to the target enzyme by minimizing the entropy loss. Additional potential advantages of macrocyclic inhibitors include high stability to metabolizing enzymes, high selectivity and, frequently, increased cellular permeability. This dissertation describes herein the structure-based design of cell-permeable macrocyclic transition state inhibitors of norovirus 3CLpro, as well as relevant structural, biochemical, spectroscopic, and cell-based studies.
    Description
    Thesis (Ph.D.)-- Wichita State University, Fairmount College of Liberal Arts and Sciences, Dept. of Chemistry
    URI
    http://hdl.handle.net/10057/12881
    Collections
    • CHEM Theses and Dissertations
    • Dissertations

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV