• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Engineering
    • Electrical Engineering and Computer Science
    • EECS Faculty Scholarship
    • EECS Research Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Engineering
    • Electrical Engineering and Computer Science
    • EECS Faculty Scholarship
    • EECS Research Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Efficient secure outsourcing of large-scale quadratic programs

    View/Open
    conference paper (247.7Kb)
    Date
    2016
    Author
    Salinas Monroy, Sergio A.
    Luo, Changqing
    Liao, Weixian
    Li, Pan
    Metadata
    Show full item record
    Citation
    Salinas Monroy, Sergio A.; Luo, Changqing; Liao, Weixian; Li, Pan. 2016. Efficient secure outsourcing of large-scale quadratic programs. ASIA CCS '16 Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security, pp 281-292
    Abstract
    The massive amount of data that is being collected by today's society has the potential to advance scientific knowledge and boost innovations. However, people often lack sufficient computing resources to analyze their large-scale data in a cost-effective and timely way. Cloud computing offers access to vast computing resources on an on-demand and pay-per-use basis, which is a practical way for people to analyze their huge data sets. However, since their data contain sensitive information that needs to be kept secret for ethical, security, or legal reasons, many people are reluctant to adopt cloud computing. For the first time in the literature, we propose a secure outsourcing algorithm for large-scale quadratic programs (QPs), which is one of the most fundamental problems in data analysis. Specifically, based on simple linear algebra operations, we design a low-complexity QP transformation that protects the private data in a QP. We show that the transformed QP is computationally indistinguishable under a chosen plaintext attack (CPA), i.e., CPA-secure. We then develop a parallel algorithm to solve the transformed QP at the cloud, and efficiently find the solution to the original QP at the user. We implement the proposed algorithm on the Amazon Elastic Compute Cloud (EC2) and a laptop. We find that our proposed algorithm offers significant time savings for the user and is scalable to the size of the QP.
    Description
    Click on the DOI link to access the article (may not be free).
    URI
    http://dx.doi.org/10.1145/2897845.2897862
    http://hdl.handle.net/10057/12817
    Collections
    • EECS Research Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV