• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Engineering
    • Industrial, Systems, and Manufacturing Engineering
    • ISME Faculty Scholarship
    • ISME Research Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Engineering
    • Industrial, Systems, and Manufacturing Engineering
    • ISME Faculty Scholarship
    • ISME Research Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Rake face temperature when machining with coated cutting tools

    View/Open
    Garcia Rake_2016.pdf (1.088Mb)
    Date
    2016
    Author
    Garcia Gonzalez, Jean Carlos
    Moscoso-Kingsley, Wilfredo
    Madhavan, Viswanathan
    Metadata
    Show full item record
    Citation
    Garcia Gonzalez, Jean Carlos; Moscoso-Kingsley, Wilfredo; Madhavan, Viswanathan. 2016. Rake face temperature when machining with coated cutting tools. Procedia Manufacturing, vol. 5:pp 815–827
    Abstract
    Infrared thermography through transparent cutting tools has been used to measure the chip-tool interface temperature. It is of interest to extend this technique to study changes in interface temperature when tool coatings are used. An initial attempt is made here to measure the chip-tool interface temperature distribution when cutting Ti6Al4V with a TiN coated YAG tool. The TiN coating thickness is kept low at about 100 nm to minimize the temperature difference between the front (chip-TiN interface) and the back (TiN-YAG interface) faces of the coating. The transparency of the YAG tool allows near infrared radiation emitted by the back face of the TiN coating to be imaged. A novel method is used to measure the emissivity of the TiN/YAG interface. Using this method, and the available blackbody calibration of the temperature vs. intensity response of the imaging system, the images are converted into temperature maps. The performance of the coated tool is also evaluated in terms of machining force and tool wear characteristics. Coatings that remain intact during the experiments will reduce ambiguity in interpretation of the results.
    Description
    Procedia Manufacturing is an open access journal focusing entirely on publishing high quality conference proceedings. Procedia Manufacturing enables fast dissemination of its content so that conference delegates can publish their papers in a dedicated online issue on Sciverse ScienceDirect under the Creative Commons license BY-NC-ND (for further details see our open access license policy.)

    Click on the DOI link to access the article (may not be free).
    URI
    http://dx.doi.org/10.1016/j.promfg.2016.08.066
    http://hdl.handle.net/10057/12717
    Collections
    • ISME Research Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV