The repository is currently being upgraded to DSpace 7. Temporarily, only admins can login. Submission of items and changes to existing items is prohibited until the completion of this upgrade process.
Wear behavior of aluminum matrix hybrid composites fabricated through friction stir welding process
Date
2016-10Author
Kurt, Halil Ibrahim
Oduncuogiu, Murat
Asmatulu, Ramazan
Metadata
Show full item recordCitation
Kurt, Halil Ibrahim; Oduncuogiu, Murat; Asmatulu, Ramazan. 2016. Wear behavior of aluminum matrix hybrid composites fabricated through friction stir welding process. Journal of Iron and Steel Research, International, vol. 23:no. 10, October 2016:pp 1119–1126
Abstract
Effects of friction stir processing (FSP) parameters and reinforcements on the wear behavior of 6061-T6 based hybrid composites were investigated. A mathematical formulation was derived to calculate the wear volume loss of the composites. The experimental results were contrasted with the results of the proposed model. The influences of sliding distance, tool traverse and rotational speeds, as well as graphite (Gr) and titanium carbide (TiC) volume fractions on the wear volume loss of the composites were also investigated using the prepared formulation. The results demonstrated that the wear volume loss of the composites significantly increased with increasing sliding distance, tool traverse speed, and rotational speed; while the wear volume loss decreased with increasing volume fraction of the reinforcements. A minimum wear volume loss for the hybrid composites with complex reinforcements was specified at the inclusion ratio of 50% TiC+ Al2O3, because of improved lubricant ability, as well as resistance to brittleness and wear. New possibilities to develop wear-resistant aluminum-based composites for different industrial applications were proposed.
Description
Click on the DOI link to access the article (may not be free).