Show simple item record

dc.contributor.authorGeorge, Deepu K.
dc.contributor.authorCharkhesht, Ali
dc.contributor.authorHull, Olivia A.
dc.contributor.authorMishra, Archana
dc.contributor.authorCapelluto, Daniel G. S.
dc.contributor.authorMitchell-Koch, Katie R.
dc.contributor.authorVinh, Nguyen Q.
dc.date.accessioned2016-11-30T22:24:52Z
dc.date.available2016-11-30T22:24:52Z
dc.date.issued2016-10-20
dc.identifier.citationDeepu K. George, Ali Charkhesht, Olivia A. Hull, Archana Mishra, Daniel G. S. Capelluto, Katie R. Mitchell-Koch, and Nguyen Q. Vinh. New Insights into the Dynamics of Zwitterionic Micelles and Their Hydration Waters by Gigahertz-to-Terahertz Dielectric Spectroscopy. The Journal of Physical Chemistry B 2016 120 (41), 10757-10767en_US
dc.identifier.issn1520-6106
dc.identifier.otherWOS:000386107500016
dc.identifier.urihttp://dx.doi.org/10.1021/acs.jpcb.6b06423
dc.identifier.urihttp://hdl.handle.net/10057/12699
dc.descriptionClick on the DOI link to access the article (may not be free).en_US
dc.description.abstractGigahertz-to-terahertz spectroscopy of macromolecules in aqueous environments provides an important approach for identifying their global and transient molecular structures, as well as directly assessing hydrogen-bonding. We report dielectric properties of zwitterionic dodecylphosphocholine (DPC) micelles in aqueous solutions over a wide frequency range, from 50 MHz to 1.12 THz. The dielectric relaxation spectra reveal different polarization mechanisms at the molecular level, reflecting the complexity of DPC micelle water interactions. We have made a deconvolution of the spectra into different components and combined them with the effective-medium approximation to separate delicate processes of micelles in water. Our measurements demonstrate reorientational motion of the DPC surfactant head groups within the micelles, and two levels of hydration water shells, including tightly and loosely bound hydration water layers. From the dielectric strength of bulk water in DPC solutions, we found that the number of waters in hydration shells is approximately constant at 950 +/- 45 water molecules per micelle in DPC concentrations up to 400 mM, and it decreases after that. At terahertz frequencies, employing the effective-medium approximation, we estimate that each DPC micelle is surrounded by a tightly bound layer of 310 +/- 45 water molecules that behave as if they are an integral part of the micelle. Combined with molecular dynamics simulations, we determine that tightly bound waters are directly hydrogen-bonded to oxygens of DPC, while loosely bound waters reside within 4 A of micellar atoms. The dielectric response of DPC micelles-at terahertz frequencies yields, for the first time, experimental information regarding the largest scale, lowest frequency collective motions in micelles. DPC micelles are a relatively simple biologically relevant system, and this work paves the way for more insight into future studies of hydration and dynamics of biomolecular systems with gigahertz-to-terahertz spectroscopy.en_US
dc.description.sponsorshipInstitute of Critical Technology and Applied Sciences (ICTAS) at Virginia Tech and the College of Liberal Arts and Sciences, Wichita State University. This project was supported by an Institutional Development Award (IDeA) from the National Institute of General Medical Sciences of the National Institutes of Health under grant number P20 GM103418.en_US
dc.language.isoen_USen_US
dc.publisherAmerican Chemical Societyen_US
dc.relation.ispartofseriesJournal of Physical Chemistry B;v.120:no.41
dc.subjectMolecular-dynamicsen_US
dc.subjectProtein hydrationen_US
dc.subjectDodecylphosphocholine micellesen_US
dc.subjectSurfactant micellesen_US
dc.subjectRelaxation behavioren_US
dc.subjectCollective dynamicsen_US
dc.subjectNeutron-scatteringen_US
dc.subjectAqueous-solutionen_US
dc.subjectNMRen_US
dc.subjectSimulationsen_US
dc.titleNew insights into the dynamics of zwitterionic micelles and their hydration waters by gigahertz-to-terahertz dielectric spectroscopyen_US
dc.typeArticleen_US
dc.rights.holder© 2016 American Chemical Societyen_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record