• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Graduate Student Research
    • ETD: Electronic Theses and Dissertations
    • Dissertations
    • View Item
    •   Shocker Open Access Repository Home
    • Graduate Student Research
    • ETD: Electronic Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Investigating the mechanical and biological properties of nanoparticles-infused thermosensitive chitosan hydrogels for targeted drug delivery

    View/Open
    Dissertation (4.074Mb)
    Date
    2016-05
    Author
    Saeednia, Leyla
    Advisor
    Asmatulu, Ramazan; Yao, Li
    Metadata
    Show full item record
    Abstract
    Targeted drug delivery systems (DDSs) have been widely studied in cancer therapy using various chemotherapy drugs. Due to the toxicity of these cancer drugs, it is desired to target them into the tumor site, hence increasing their efficiency and decreasing their overall side effects. Injectable thermosensitive hydrogels are liquid at lower temperatures before administering them, but they form a gel when the temperature is increased from room temperature (21°C) to body temperature (37°C) and are considered to be a promising drug delivery system. Chitosan (CH) is a natural polysaccharide that has gained a great deal of interest for various biomedical applications, and it has the capability of making thermosensitive hydrogels when mixed with β-glycerophosphate (β-GP). Nanotechnology has received significant attention in biomedical applications, such as drug delivery. Carbon-based materials have the advantage of being more environmentally and biologically friendly than inorganic materials. In this study, three types of carbon-based nanoparticles—carbon nanotubes (CNTs), fullerene (F), and graphene (G)—were used to make CH-based thermosensitive nanohybrid hydrogels, which were analyzed mechanically, chemically, and biologically in order to evaluate their potential in drug delivery applications, especially cancer treatment. Structural results confirmed the formation of physical thermosensitive hybrid hydrogels. The cell viability of nanoparticle-infused hydrogels were found to be between 80% and 100%. Swelling and degradation behavior were also investigated and found to be improved with the addition of nanoparticles. The release behavior of methotrexate as a sample anticancer drug showed a slower release behavior in nanohybrid hydrogels. The nanohybrid hydrogels were found to have effective anti-tumor effect on cancer cells in vitro.
    Description
    Thesis (Ph.D.)-- Wichita State University, College of Engineering, Dept. of Mechanical Engineering
    URI
    http://hdl.handle.net/10057/12644
    Collections
    • Dissertations
    • ME Theses and Dissertations

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2022  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV