• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Engineering
    • Electrical Engineering and Computer Science
    • EECS Faculty Scholarship
    • EECS Research Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Engineering
    • Electrical Engineering and Computer Science
    • EECS Faculty Scholarship
    • EECS Research Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Optimal resource allocation in Cognitive Smart Grid Networks

    Date
    2015
    Author
    Boustani, Arash
    Jadliwala, Murtuza Shabbir
    Kwon, Hyuck M.
    Alamatsaz, Navid Reza
    Metadata
    Show full item record
    Citation
    A. Boustani, M. Jadliwala, H. M. Kwon and N. Alamatsaz, "Optimal resource allocation in Cognitive Smart Grid Networks," 2015 12th Annual IEEE Consumer Communications and Networking Conference (CCNC), Las Vegas, NV, 2015, pp. 499-506
    Abstract
    Taking advantage of information and communication technologies, the power industry is moving towards the next generation power grid, the smart grid. This information-based power grid is expected to change the way electricity is generated, distributed, and transmitted to the consumers by enhancing the reliability, efficiency, sustainability, and economics of the grid. However, due to the high volume and high granularity of the data generated by smart electricity meters, careful planning and management of this communication network is necessary. Given the large scale future deployment of smart grid, utility companies face possible network capacity constraints. Due to this scarcity, an efficient spectrum allocation is often difficult, thus resulting in low overall bandwidth utilization in Smart Grid Networks (SGN). Hence, an efficient utilization of this communication network should be studied. Cognitive Radio Networks (CRN) enable Secondary Users (SU) to coexist with existing network infrastructures. Cognitive Smart Grid Networks (CSGN) use CRN to optimize resource allocation in SGNs. However, efficient utilization of available channel bandwidth by SUs, without interfering with the Primary Users (PU), remains an important open problem in CSGN. In this paper, we focus on CSGN as the Secondary Network (SN), coexisting with a Primary Network, and outlining the applicability of Code Division Multiple Access for overcoming the low Number of SUs (NSU) in SN. We propose a novel resource allocation technique to improve NSU in CSGN by using a specific kind of Orthogonal Chip Sequence (OCS) allocation in spread spectrum communications for SU transmissions. By means of extensive simulations and analysis, we show that our technique improves NSU on SN (or CSGNs) significantly.
    Description
    Click on the DOI link to access the article (may not be free).
    URI
    http://dx.doi.org/10.1109/CCNC.2015.7158025
    http://hdl.handle.net/10057/12471
    Collections
    • EECS Research Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV