• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Engineering
    • Mechanical Engineering
    • ME Research Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Engineering
    • Mechanical Engineering
    • ME Research Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Vertical impact simulations of a full-size and simplified scaled models of an aircraft fuselage section

    Date
    2016
    Author
    Prasad, Vishal Krishna
    Tay, Yi Yang
    Lankarani, Hamid M.
    Metadata
    Show full item record
    Citation
    Prasad, Vishal Krishna; Tay, Yi Yang; Lankarani, Hamid M. 2016. Vertical impact simulations of a full-size and simplified scaled models of an aircraft fuselage section. ASME 2015 International Mechanical Engineering Congress and Exposition, Volume 1: Advances in Aerospace Technology Houston, Texas, USA, November 13–19, 2015
    Abstract
    Computer modeling and simulations on the crashworthiness of aircraft using validated models have provided insight into the energy-absorption characteristics of structures and have allowed parametric studies in the evaluation of different crash energy management designs. In this study, the dynamic responses of a detailed and simplified full-size, and scaled fuselage models in vertical impact are investigated. The detailed full-size model, constructed from a Boeing 737 mid fuselage section, consists of a stiff auxiliary fuel tank and a cargo door. The detailed full-size model is dropped from a height of 4.26 m (14 ft) onto a rigid surface, which corresponds to a vertical impact speed of 9.14 m/s (30 ft/s). The drop simulations are performed using the non-linear explicit code, LS-DYNA. Correlation of the detailed full-size model with the physical test conducted by the Federal Aviation Administration is demonstrated. Scale modeling technique applied to the aircraft fuselage section is utilized and for scaling purposes, a simplified full-size model is constructed without the auxiliary fuel tank and cargo door. The crash responses of the simplified full-size models in relation to the detailed full-size model are shown and discussed. The scaling approach involves geometrical scaling of the simplified full-size model with scale factors of 1/5th, 1/10th and 1/20th. The vertical impact simulations of the scaled models are carried with identical impact speed as that of the detailed full-size model. General scaling laws for geometry, mass, velocity, acceleration and forces are utilized to predict the results for the scaled models. The approach and results presented in this study have demonstrated an efficient and innovative method on the design and crashworthiness of a fuselage section.
    Description
    Click on the DOI link to access the article (may not be free).
    URI
    http://dx.doi.org/10.1115/IMECE2015-51023
    http://hdl.handle.net/10057/12312
    Collections
    • ME Research Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2022  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV