• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Graduate Student Research
    • GRASP: Graduate Research and Scholarly Projects
    • Proceedings 2016: 12th Annual Symposium on Graduate Research and Scholarly Projects
    • View Item
    •   Shocker Open Access Repository Home
    • Graduate Student Research
    • GRASP: Graduate Research and Scholarly Projects
    • Proceedings 2016: 12th Annual Symposium on Graduate Research and Scholarly Projects
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Comparative studies on water self-diffusivity confined in graphene nanogap: Molecular dynamics simulation

    View/Open
    Abstract (511.5Kb)
    Date
    2016-04-29
    Author
    Moulod, Mohammad
    Advisor
    Hwang, Gisuk
    Metadata
    Show full item record
    Citation
    Moulod, Mohammad. 2016. Comparative studies on water self-diffusivity confined in graphene nanogap: Molecular dynamics simulation. --In Proceedings: 12th Annual Symposium on Graduate Research and Scholarly Projects. Wichita, KS: Wichita State University, p. 82
    Abstract
    Water behaviour in presence of graphene is studied in various studies and surface interaction between water and graphene is of high interest. However, confined water behaviour due to different potentials still is not completely clear. In this study, SPC/E and TIP3P water models have been confined between two fixed layers of graphene nanogaps with size of Lz = 0.8 to 4 nm at STP conditions. Using Molecular dynamic simulation, self-water diffusivity is calculated by the mean squared displacement approach for both lateral and vertical direction water diffusivities. It is found that the water self-diffusivity in the confined region is lower than that of the bulk water, and it decreases as the gap size decreases and the surface energy increases. No significant effect of the equilibrium distance between the water and graphene on the water self-diffusivity is found. The in-plane water self-diffusivity is very larger than that of the out-of-plane.
    Description
    Presented to the 12th Annual Symposium on Graduate Research and Scholarly Projects (GRASP) held at the Heskett Center, Wichita State University, April 29, 2016.

    Research completed at Department of Mechanical Engineering, College of Engineering
    URI
    http://hdl.handle.net/10057/12229
    Collections
    • ME Graduate Student Conference Papers
    • Proceedings 2016: 12th Annual Symposium on Graduate Research and Scholarly Projects

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV