Geometry of nonlinear connections
Citation
Parker, Phillip E. and L. Del Riego. 2005. Geometry of nonlinear connections. Nonlinear Anal. 63, e501-e510.
Abstract
We show that locally diffeomorphic exponential maps can be defined for any second-order differential equation,
and give a (possibly nonlinear) covariant derivative for any (possibly nonlinear) connection. We introduce vertically homogeneous connections as the natural correspondents of homogeneous second-order differential equations.
We provide significant support for the prospect of studying nonlinear connections via certain, closely associated secondorder
differential equations. One of the most important is our generalized Ambrose-Palais-Singer correspondence.