Show simple item record

dc.contributor.authorJavidmand, Puya
dc.contributor.authorHoffmann, Klaus A.
dc.date.accessioned2016-06-14T20:17:18Z
dc.date.available2016-06-14T20:17:18Z
dc.date.issued2015
dc.identifier.citationJavidmand, Puya; Hoffmann, Klaus A. 2015. Comprehensive two fluid model simulation of critical two-phase flow through short tube orifices. ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels San Francisco, California, USA, July 6–9, 2015en_US
dc.identifier.isbn978-0-7918-5687-1
dc.identifier.otherWOS:000374197900070
dc.identifier.urihttp://dx.doi.org/10.1115/ICNMM2015-48047
dc.identifier.urihttp://hdl.handle.net/10057/12087
dc.descriptionClick on the DOI link to access the article (may not be free).en_US
dc.description.abstractSmall-diameter tubes are utilized widely as expansion devices in refrigeration systems. They are employed in either kinds of short-tube orifices or long capillary tubes. Performance of these tubes is reliant upon critical flashing of the two-phase flow that controls the mass flow rate of the refrigeration system resulting in a steep reduction in pressure and temperature. The critical flow condition is approached whenever the mass flow rate increases to an amount whereby the choked-flow phenomenon occurs at the outlet of the tube. Due to their very small tube diameter, the evaporating two-phase flow, and the choked-flow condition, numerical analysis of flow through short-tube orifices is challenging. Accordingly, all available numerical analyses of such flows are performed as one-dimensional and in the majority of them, auxiliary correlations are applied to simplify the solution procedure. Typical approaches include homogeneous flow models and separated flow models, both of which consider the two-phase region in thermal equilibrium. The most comprehensive method for analyzing such flows is the two-fluid model in which there is no assumption of equilibrium between phases. Because of the complicated nature of this model, it has been used in a very limited number of previous investigations. Furthermore, two-phase flow calculations at the entrance and vena contracta region were eliminated. In the current investigation, additional steps utilized to improve the accuracy of computations include the following: (1) applying the most comprehensive two-fluid model including the effect of various two-phase flow patterns and the metastability of liquid phase, and (2) performing a two-phase analysis of the evaporating flow through the entrance and vena contracta regions which involves simulating the region as a converging diverging tube and performing a quasi-one-dimensional solution of governing equations through this region. Results showed more compatibility with experimental data in comparison with those of previous investigations for predicting the critical flow condition of common refrigerants HFC-134a and HFC-410a through short-tube orifices and long capillary tubes.en_US
dc.language.isoen_USen_US
dc.publisherAmerican Society of Mechanical Engineersen_US
dc.relation.ispartofseriesASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels;
dc.subjectAdiabatic capillary tubesen_US
dc.subjectRefrigerant mass-flowen_US
dc.subjectNeural-network correlationen_US
dc.subjectGeneralized correlationen_US
dc.subject2-fluid modelen_US
dc.subjectAlternative refrigerantsen_US
dc.subjectPerformanceen_US
dc.subjectPredictionen_US
dc.subjectMixturesen_US
dc.subjectSystemsen_US
dc.titleComprehensive two fluid model simulation of critical two-phase flow through short tube orificesen_US
dc.typeConference paperen_US
dc.rights.holderCopyright © 2015 by ASMEen_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

  • AE Research Publications
    Research publications authored by the Department of Aerospace Engineering faculty and graduate students.

Show simple item record