Investigating the thermal, mechanical, and electrochemical properties of PVdF/PVP nanofibrous membranes for supercapacitor applications
Date
2016-08-10Author
Jabbarnia, Amir
Khan, Waseem Sabir
Ghazinezami, Ali
Asmatulu, Ramazan
Metadata
Show full item recordCitation
Jabbarnia, Amir; Khan, Waseem Sabir; Ghazinezami, Ali; Asmatulu, Ramazan. 2016. Investigating the thermal, mechanical, and electrochemical properties of PVdF/PVP nanofibrous membranes for supercapacitor applications. Journal of Applied Polymer Science, vol. 133:no. 30:Article Number: 43707
Abstract
Polyvinylidene fluoride and polyvinylpyrrolidone polymers incorporated with carbon black nanoparticles (50nm) were electrospun to fabricate nanofibrous membranes for supercapacitor separators. Different weight percentages (0, 0.25, 0.5, 1, 2, and 4wt%) of carbon black nanoparticles were dispersed in N,N-dimethylacetamide and acetone prior to the electrospinning processes at various voltage, pump speed, and tip-to-collector distances. The morphology, thermal, mechanical, hydrophobic, and electrochemical characterization of nanofibrous membrane were analyzed using different techniques, such as scanning electron microscopy, differential scanning calorimetry, capacitance bridge, thermogravimetric analysis, dynamic mechanical analyzer, and water contact angle. Effects of annealing and UV irradiation exposures on the nanofibrous membranes were investigated in detail. Test results revealed that the physical properties of the nanocomposite separators were significantly enhanced as a function of carbon black inclusions in the polymeric structures, which may be useful for the applications of supercapacitor separators and other energy storage devices.
Description
Click on the DOI link to access the article (may not be free).