• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Engineering
    • Electrical Engineering and Computer Science
    • EECS Faculty Scholarship
    • EECS Research Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Engineering
    • Electrical Engineering and Computer Science
    • EECS Faculty Scholarship
    • EECS Research Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Jointly optimized QoS-aware virtualization and routing in software defined networks

    Date
    2016-02-26
    Author
    Lin, Shih-Chun
    Wang, Pu
    Luo, Min
    Metadata
    Show full item record
    Citation
    Lin, Shih-Chun; Wang, Pu; Luo, Min. 2016. Jointly optimized QoS-aware virtualization and routing in software defined networks. Computer Networks, vol. 96, 26 February 2016:pp 69–78
    Abstract
    Software Defined Networks (SDNs) have been recognized as the next-generation networking paradigm that decouples the network control plane from the data forwarding plane. A logically centralized controller is responsible for all the control decisions and communication among the forwarding switches. However, current traffic engineering techniques and state-of-the-art routing algorithms do not effectively use the merits of SDNs, such as global centralized visibility, control and data plane decoupling, network management simplification and great computation capability. In this paper, a multi-tenancy management framework is proposed to enable the jointly optimized design of quality-of-services (QoSs)-aware virtualization and routing by tenant isolation and prioritization as well as flow allocation, fulfilling QoS requirements of tenants' applications. Specifically, a fine-grained network virtualization is first proposed to isolate and prioritize tenants through the design of network and switch hypervisors. Furthermore, a QoS-aware dynamic flow allocation is proposed to enable optimal flow routes selection upon the given network slicing with QoS provisioning. Finally, an adaptive feedback management tool, called QoS-aware Virtualization-enabled Routing (QVR), is proposed to combine virtualization with flow allocation and supports reliable and efficient transmissions with regards of time-varying QoS requirements, network topologies, and traffic statistics. Simulations confirm that QVR achieves much less shared edges, congestion latency, and traffic delay for multiple tenants, thus facilitating virtualization-enabled traffic engineering for multi-tenancy SDNs.
    Description
    Click on the DOI link to access the article (may not be free).
    URI
    http://dx.doi.org/10.1016/j.comnet.2015.08.003
    http://hdl.handle.net/10057/11972
    Collections
    • EECS Research Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV