Show simple item record

dc.contributor.authorAlarifi, Ibrahim M.
dc.contributor.authorAlharbi, Abdulaziz
dc.contributor.authorKhan, Waseem Sabir
dc.contributor.authorAsmatulu, Ramazan
dc.identifier.citationAlarifi, I. M, Alharbi, A., Khan, W.S and Asmatulu, R. (2015), Carbonized electrospun polyacrylonitrile nanofibers as highly sensitive sensors in structural health monitoring of composite structures. J. Appl. Polym. Sci., 133, 43235en_US
dc.descriptionClick on the DOI link to access the article (may not be free).en_US
dc.description.abstractElectrospun polyacrylonitrile (PAN) nanofibers were stabilized at 280 degrees C for 1 h in an ambient condition, and then carbonized at 850 degrees C in inert argon gas for additional 1 h in order to fabricate highly pure carbonous nanofibers for the development of highly sensitive sensors in structural health monitoring (SHM) of composite aircraft and wind turbines. This study manifests the real-time strain response of the carbonized PAN nanofibers under various tensile loadings. The prepared carbon nanofibers were placed on top of the carbon fiber pre-preg composite as a single layer. Using a hand lay-up method, and then co-cured with the pre-preg composites in a vacuum oven following the curing cycle of the composite. The electric wires were connected to the top surface of the composite panels where the cohesively bonded conductive nanofibers were placed prior to the tensile and compression loadings in the grips of the tensile unit. The test results clearly showed that the carbonized electrospun PAN nanofibers on the carbon fiber composites were remarkably performed well. Even the small strain rates (e.g., 0.020% strain) on the composite panels were easily detected through voltage and resistance changes of the panels. The change in voltage can be mainly attributed to the breakage/deformation of the conductive network of the carbonized PAN nanofibers under the loadings. The primary goal of the present study is to develop a cost-effective, lightweight, and flexible strain sensor for the SHM of composite aircraft and wind turbines.en_US
dc.description.sponsorshipThe authors gratefully acknowledge the Kansas NSF EPSCoR (#R51243/700333) and Wichita State University for financial and technical support of the present work.en_US
dc.publisherJohn Wiley & Sons, Inc.en_US
dc.relation.ispartofseriesJournal of Applied Polymer Science;v.133:no.13
dc.subjectConducting polymersen_US
dc.subjectMechanical propertiesen_US
dc.titleCarbonized electrospun polyacrylonitrile nanofibers as highly sensitive sensors in structural health monitoring of composite structuresen_US
dc.rights.holder© 2015 Wiley Periodicals, Inc.en_US

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record