• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Graduate Student Research
    • ETD: Electronic Theses and Dissertations
    • Master's Theses
    • View Item
    •   Shocker Open Access Repository Home
    • Graduate Student Research
    • ETD: Electronic Theses and Dissertations
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Evaluation of the occupant response and structural damage according to the newly proposed pole test under Federal Motor Vehicle Safety Standard side impact regulation

    View/Open
    Thesis (2.226Mb)
    Date
    2007-05
    Author
    Siruvole, Sandeep Kumar
    Advisor
    Lankarani, Hamid M.
    Metadata
    Show full item record
    Abstract
    Every year around the world various types of automobile accidents occur, out of which side impact vehicular collisions are the most severe. Of these, side crashes into fixed narrow objects like trees, poles account for quarter percent of total deaths and serious injuries. Moreover these side impacts present a difficult problem for improving automotive crashworthiness because of the limited crushable zone between the vehicle occupant and the intruding door structure. To improve the automotive safety in side impacts a new pole test has been proposed under Federal Motor Vehicle Safety Standard (FMVSS) 214 to make the existing regulation more comprehensive in addressing the critical head and neck injuries in addition to thoracic and pelvis injuries. In this thesis, a finite element model of the Ford Taurus and Moving Deformable Barrier (MDB) as developed by National Crash Analysis Center (NCAC) has been used for the impact analysis. The US DOT-SID side impact dummy taken from MADYMO dummy database has been used as the vehicle occupant and the rigid pole modeled in MSC. Patran software as the narrow object. Computer Simulations have been analyzed according to the new proposed pole test and (FMVSS) 214 regulation. The critical injury values, the occupant kinematics and the structural damage have been compared justifying the need for the new pole test for improving the occupant safety.
    Description
    Thesis (M.S.)--Wichita State University, College of Engineering, Dept. of Mechanical Engineering.
    URI
    http://hdl.handle.net/10057/1173
    Collections
    • CE Theses and Dissertations
    • Master's Theses
    • ME Theses and Dissertations

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV