• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Graduate Student Research
    • ETD: Electronic Theses and Dissertations
    • Master's Theses
    • View Item
    •   Shocker Open Access Repository Home
    • Graduate Student Research
    • ETD: Electronic Theses and Dissertations
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An injectable hydrogel for nucleus pulposus regeneration

    View/Open
    t15027_Priyadarshani.pdf (1.172Mb)
    Date
    2015-05
    Author
    Priyadarshani, Priyanka
    Advisor
    Yao, Li
    Metadata
    Show full item record
    Abstract
    Intervertebral discs within the human spine act as shock absorbers between each of the vertebrae in the spinal column. As people age, disc cells are constantly subjugated to degenerating stress by various mechanical and environmental factors leading to musculoskeletal impairment and lower back pain. Nucleus pulposus cells (NP cells), jelly-like avascular tissue within the middle of the intervertebral disc, are crucial component of the disc Disc degeneration starts here in these cells. Research into regenerating the NP cells in degenerating intervertebral discs may provide a breakthrough in treating spine disorders. This project is designed to fabricate and characterize hydrogel composites to investigate the growth and viability of human nucleus pulposus (HNP) cells and the extracellular matrix gene expression by the HNP cells in the hydrogel. Specifically, we fabricated type II collagen and hyaluronic acid hydrogels that were cross-linked with the ethyl-3(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide crosslinker (NHS). The hydrogels were cross-linked using varying concentrations of the crosslinkers. HNP were seeded into crosslinked and non-crosslinked hydrogels. Results from cell viability assays such as live/dead assay and AlamarBlue assay showed cell growth and proliferation in both non-crosslinked and crosslinked hydrogels. Quantitative PCR assay demonstrated the extracellular matrix gene expression by the cells cultured in these gels. The results of gene expression studies indicated the formation of extracellular matrix by the cells and adaption of cells to the environment after long-term cell culture in these hydrogels. This study suggests that the type II collagen-HA hydrogel and crosslinked hydrogel with EDC at low concentration are a permissive matrix for the growth of HNP cells and can potentially be applied to NP repair.
    Description
    Thesis (M.S.)--Wichita State University, Fairmount College of Liberal Arts and Sciences, Dept. of Biological Sciences
    URI
    http://hdl.handle.net/10057/11645
    Collections
    • BIO Theses
    • LAS Theses and Dissertations
    • Master's Theses

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV