• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Engineering
    • Industrial, Systems, and Manufacturing Engineering
    • ISME Faculty Scholarship
    • ISME Research Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Engineering
    • Industrial, Systems, and Manufacturing Engineering
    • ISME Faculty Scholarship
    • ISME Research Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Copula-based Sampling Method for Data-driven prognostics and health management

    Date
    2014
    Author
    Xi, Zhimin
    Jing, Rong
    Wang, Pingfeng
    Hu, Chao
    Metadata
    Show full item record
    Citation
    Xi, Zhimin; Jing, Rong; Wang, Pingfeng; Hu, Chao. 2014. A Copula-based Sampling Method for Data-driven prognostics and health management. ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Volume 3A: 39th Design Automation Conference Portland, Oregon, USA, August 4–7, 2013
    Abstract
    This paper develops a Copula-based sampling method for data-driven prognostics and health management (PHM). The principal idea is to first build statistical relationship between failure time and the time realizations at specified degradation levels on the basis of off-line training data sets, then identify possible failure times for on-line testing units based on the constructed statistical model and available on-line testing data. Specifically, three technical components are proposed to implement the methodology. First of all, a generic health index system is proposed to represent the health degradation of engineering systems. Next, a Copula-based modeling is proposed to build statistical relationship between failure time and the time realizations at specified degradation levels. Finally, a sampling approach is proposed to estimate the failure time and remaining useful life (RUL) of on-line testing units. Two case studies, including a bearing system in electric cooling fans and a 2008 IEEE PHM challenge problem, are employed to demonstrate the effectiveness of the proposed methodology.
    Description
    Click on the DOI link to access the article (may not be free).
    URI
    http://dx.doi.org/10.1115/DETC2013-13592
    http://hdl.handle.net/10057/11570
    Collections
    • ISME Research Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV