• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Engineering
    • Industrial, Systems, and Manufacturing Engineering
    • ISME Faculty Scholarship
    • ISME Research Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Engineering
    • Industrial, Systems, and Manufacturing Engineering
    • ISME Faculty Scholarship
    • ISME Research Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A maximum confidence enhancement based sequential sampling scheme for simulation-based design

    Date
    2014
    Author
    Wang, Zequn
    Wang, Pingfeng
    Metadata
    Show full item record
    Citation
    Wang, Zequn; Wang, Pingfeng. 2014. A maximum confidence enhancement based sequential sampling scheme for simulation-based design. ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference Volume 3B: 39th Design Automation Conference Portland, Oregon, USA, August 4–7, 2013
    Abstract
    This paper presents a maximum confidence enhancement based sequential sampling approach for simulation-based design under uncertainty. In the proposed approach, the ordinary Kriging method is adopted to construct surrogate models for all constraints and thus Monte Carlo simulation (MCS) is able to be used to estimate reliability and its sensitivity with respect to design variables. A cumulative confidence level is defined to quantify the accuracy of reliability estimation using MCS based on the Kriging models. To improve the efficiency of proposed approach, a maximum confidence enhancement based sequential sampling scheme is developed to update the Kriging models based on the maximum improvement of the defined cumulative confidence level, in which a sample that produces the largest improvement of the cumulative confidence level is selected to update the surrogate models. Moreover, a new design sensitivity estimation approach based upon constructed Kriging models is developed to estimate the reliability sensitivity information with respect to design variables without incurring any extra function evaluations. This enables to compute smooth sensitivity values and thus greatly enhances the efficiency and robustness of the design optimization process. Two case studies are used to demonstrate the proposed methodology.
    Description
    Click on the DOI link to access the article (may not be free).
    URI
    http://dx.doi.org/10.1115/DETC2013-12608
    http://hdl.handle.net/10057/11569
    Collections
    • ISME Research Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV