• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Engineering
    • Industrial, Systems, and Manufacturing Engineering
    • ISME Faculty Scholarship
    • ISME Research Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Engineering
    • Industrial, Systems, and Manufacturing Engineering
    • ISME Faculty Scholarship
    • ISME Research Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Design of a robust classification fusion platform for structural health diagnostics

    Date
    2014
    Author
    Tamilselvan, Prasanna
    Wang, Pingfeng
    Hu, Chao
    Metadata
    Show full item record
    Citation
    Tamilselvan, Prasanna; Wang, Pingfeng; Hu, Chao. 2014. Design of a robust classification fusion platform for structural health diagnostics. ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference Volume 3A: 39th Design Automation Conference Portland, Oregon, USA, August 4–7, 2013
    Abstract
    Efficient health diagnostics provides benefits such as improved safety, improved reliability, and reduced costs for the operation and maintenance of engineered systems. This paper presents a multi-attribute classification fusion approach which leverages the strengths provided by multiple membership classifiers to form a robust classification model for structural health diagnostics. Health diagnosis using the developed approach consists of three primary steps: (i) fusion formulation using a k-fold cross validation model; (ii) diagnostics with multiple multi-attribute classifiers as member algorithms; and (iii) classification fusion through a weighted majority voting with dominance system. State-of-the-art classification techniques from three broad categories (i.e., supervised learning, unsupervised learning, and statistical inference) were employed as the member algorithms. The proposed classification fusion approach is demonstrated with a bearing health diagnostics problem. Case study results indicated that the proposed approach outperforms any stand-alone member algorithm with better diagnostic accuracy and robustness.
    Description
    Click on the DOI link to access the article (may not be free).
    URI
    http://dx.doi.org/10.1115/DETC2013-12601
    http://hdl.handle.net/10057/11568
    Collections
    • ISME Research Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV