• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Engineering
    • Mechanical Engineering
    • ME Research Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Engineering
    • Mechanical Engineering
    • ME Research Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Bio-inspired artificial muscle structure for integrated sensing and actuation

    Date
    2015-04-01
    Author
    Ye, Zhihang
    Faisal, Md. Shahnewaz Sabit
    Asmatulu, Ramazan
    Chen, Zheng
    Metadata
    Show full item record
    Citation
    Zhihang Ye ; Md. Shahnewaz Sabit Faisal ; Ramazan Asmatulu ; Zheng Chen; Bio-inspired artificial muscle structure for integrated sensing and actuation . Proc. SPIE 9430, Electroactive Polymer Actuators and Devices (EAPAD) 2015, 943024 (April 1, 2015)
    Abstract
    In this paper, a novel artificial muscle/tendon structure is developed for achieving bio-inspired actuation and self-sensing. The hybrid structure consists of a dielectric elastomer (DE) material connected with carbon fibers, which incorporates the built-in sensing and actuation capability of DE and mechanical, electrical interfacing capability of carbon fibers. DEs are light weight artificial muscles that can generate compliant actuation with low power consumption. Carbon fibers act as artificial tendon due to their high electro-conductivity and mechanical strength. PDMS material is used to electrically and mechanically connect the carbon fibers with the DE material. A strip actuator was fabricated to verify the structure design and characterize its actuation and sensing capabilities. A 3M VHB 4905 tape was used as the DE material. To make compliant electrodes on the VHB tape, carbon black was sprayed on the surface of VHB tape. To join the carbon fibers to the VHB tape, PDMS was used as bonding material. Experiments have been conducted to characterize the actuation and sensing capabilities. The actuation tests have shown that the energy efficiency of artificial muscle can reach up to 0.7% and the strain can reach up to 1%. The sensing tests have verified that the structure is capable of self-sensing through the electrical impedance measurement.
    Description
    Click on the DOI link to access the article (may not be free).
    URI
    http://dx.doi.org/10.1117/12.2085882
    http://hdl.handle.net/10057/11305
    Collections
    • ME Research Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV