• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Engineering
    • Industrial, Systems, and Manufacturing Engineering
    • ISME Faculty Scholarship
    • ISME Research Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Engineering
    • Industrial, Systems, and Manufacturing Engineering
    • ISME Faculty Scholarship
    • ISME Research Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Prediction of unit process life cycle inventory (UPLCI) energy consumption in a friction stir weld

    Date
    2015-04
    Author
    Shrivastava, Amber
    Overcash, Michael
    Pfefferkorn, Frank E.
    Metadata
    Show full item record
    Citation
    Shrivastava, Amber; Overcash, Michael; Pfefferkorn, Frank E. 2015. Prediction of unit process life cycle inventory (UPLCI) energy consumption in a friction stir weld. Journal of Manufacturing Processes, vol. 18, April 2015:pp 46–54
    Abstract
    The objective of this study is to determine a method of quantifying the energy consumption in friction stir welding (FSW). Qualitatively, it has long been known that FSW uses less energy than fusion welding processes because the average FSW weld temperature does not exceed the solidus temperature. However, tools and data to quantitatively determine the energy consumption in FSW have been missing. The power consumption as a function of time was measured during FSW of 5.2-mm-deep welds in 6061-T6 and 7075-T6 aluminum alloys on a 3-axis CNC mill. The energy consumption is divided into four parts: idle energy and standby energy related to the machine being used as well as plunge energy and FSW energy related to creating the joint. Equations for calculating each of the energy components and the total energy consumption are presented. The concept of specific weld energy is presented as an intrinsic material property that can be used to estimate the FSW power if the weld cross-section and weld speed are known. A method of estimating the weld cross-section based on the FSW tool geometry is presented. It is found that for these two aluminum alloys the specific weld energy decreases significantly with increased weld speed, however, it can be treated as independent of spindle rotation rate. The FSW process/machine is identified as low tare and it is acknowledged that the strategies to reduce total energy consumption may be different than those used for metal cutting.
    Description
    Click on the DOI link to access the article (may not be free).
    URI
    http://dx.doi.org/10.1016/j.jmapro.2014.10.006
    http://hdl.handle.net/10057/11288
    Collections
    • ISME Research Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2021  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV