• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Engineering
    • Mechanical Engineering
    • ME Research Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Engineering
    • Mechanical Engineering
    • ME Research Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    ARP2/3 complex is required for directional migration of neural stem cell-derived oligodendrocyte precursors in electric fields

    Date
    2015-03-21
    Author
    Li, Yongchao
    Wang, Pei-Shan
    Lucas, George
    Li, Rong
    Yao, Li
    Metadata
    Show full item record
    Citation
    Li, Yongchao; Wang, Pei-Shan; Lucas, George; Li, Rong; Yao, Li. 2015. ARP2/3 complex is required for directional migration of neural stem cell-derived oligodendrocyte precursors in electric fields. Stem Cell Research & Therapy, vol. 6:article 41
    Abstract
    Introduction: The loss of oligodendrocytes in a lesion of the central nervous system causes demyelination and therefore impairs axon function and survival. Transplantation of neural stem cell-derived oligodendrocyte precursor cells (NSC-OPCs) results in increased oligodendrocyte formation and enhanced remyelination. The directional migration of grafted cells to the target can promote the establishment of functional reconnection and myelination in the process of neural regeneration. Endogenous electric fields (EFs) that were detected in the development of the central nervous system can regulate cell migration. Methods: NSCs were isolated from the brains of ARPC2(+/+) and ARPC2(-/-) mouse embryo and differentiated into OPCs. After differentiation, the cultured oligospheres were stimulated with EFs (50, 100, or 200 mV/mm). The migration of OPCs from oligospheres was recorded using time-lapse microscopy. The cell migration directedness and speed were analyzed and quantified. Results: In this study, we found that NSC-OPCs migrated toward the cathode pole in EFs. The directedness and displacement of cathodal migration increased significantly when the EF strength increased from 50 to 200 mV/mm. However, the EF did not significantly change the cell migration speed. We also showed that the migration speed of ARPC2(-/-) OPCs, deficient in the actin-related proteins 2 and 3 (ARP2/3) complex, was significantly lower than that of wild type of OPCs. ARPC2(-/-) OPCs migrated randomly in EFs. Conclusions: The migration direction of NSC-OPCs can be controlled by EFs. The function of the ARP complex is required for the cathodal migration of NSC-OPCs in EFs. EF-guided cell migration is an effective model to understanding the intracellular signaling pathway in the regulation of cell migration directness and motility.
    Description
    Click on the DOI link to access the article (may not be free).
    URI
    http://dx.doi.org/10.1186/s13287-015-0042-0
    http://hdl.handle.net/10057/11274
    Collections
    • ME Research Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV