• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Engineering
    • Mechanical Engineering
    • ME Research Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Engineering
    • Mechanical Engineering
    • ME Research Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A hybrid direct-automatic differentiation method for the computation of independent sensitivities in multibody systems

    Date
    2014-12-21
    Author
    Callejo, Alfonso
    Garcia de Jalon, Javier
    Metadata
    Show full item record
    Citation
    Callejo, Alfonso; Garcia de Jalon, Javier. 2014. A hybrid direct-automatic differentiation method for the computation of independent sensitivities in multibody systems. International Journal for Numerical Methods in Engineering, vol. 100:no. 12:pp 933–952
    Abstract
    The usefulness of sensitivity analyses in mechanical engineering is very well-known. Interesting examples of sensitivity analysis applications include the computation of gradients in gradient-based optimization methods and the determination of the parameter relevance on a specific response or objective. In the field of multibody dynamics, analytical sensitivity methods tend to be very complex, and thus, numerical differentiation is often used instead, which degrades numerical accuracy. In this work, a simple and original method based on state-space motion differential equations is presented. The number of second-order motion differential equations equals the number of DOFs, that is, there is one differential equation per independent acceleration. The dynamic equations are then differentiated with respect to the parameters by using automatic differentiation and without manual intervention from the user. By adding the sensitivity equations to the dynamic equations, the forward dynamics and the independent sensitivities can be robustly computed using standard integrators. Efficiency and accuracy are assessed by analyzing three numerical examples (a double pendulum, a four-bar linkage, and an 18-DOF coach) and by comparing the results with those of the numerical differentiation approach. The results show that the integration of independent sensitivities using automatic differentiation is stable and accurate to machine precision.
    Description
    Click on the DOI link to access the article (may not be free).
    URI
    http://dx.doi.org/10.1002/nme.4804
    http://hdl.handle.net/10057/11020
    Collections
    • ME Research Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV