• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Graduate Student Research
    • ETD: Electronic Theses and Dissertations
    • Master's Theses
    • View Item
    •   Shocker Open Access Repository Home
    • Graduate Student Research
    • ETD: Electronic Theses and Dissertations
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Improving GPU performance by regrouping CPU-memory data

    View/Open
    t14013_GUMMADI_Deepthi_SP14.pdf (1.255Mb)
    Date
    2014-05
    Author
    Gummadi, Deepthi
    Advisor
    Asaduzzaman, Abu
    Metadata
    Show full item record
    Abstract
    In order to fast effective analysis of large complex systems, high-performance computing is essential. NVIDIA Compute Unified Device Architecture (CUDA)-assisted central processing unit (CPU) / graphics processing unit (GPU) computing platform has proven its potential to be used in high-performance computing. In CPU/GPU computing, original data and instructions are copied from CPU main memory to GPU global memory. Inside GPU, it would be beneficial to keep the data into shared memory (shared only by the threads of that block) than in the global memory (shared by all threads). However, shared memory is much smaller than global memory (for Fermi Tesla C2075, total shared memory per block is 48 KB and total global memory is 6 GB). In this paper, we introduce a CPU-memory to GPU-global-memory mapping technique to improve GPU and overall system performance by increasing the effectiveness of GPU-shared memory. We use NVIDIA 448-core Fermi and 2496-core Kepler GPU cards in this study. Experimental results, from solving Laplace's equation for 512x512 matrixes using a Fermi GPU card, show that proposed CPU-to-GPU memory mapping technique help decrease the overall execution time by more than 75%.
    Description
    Thesis (M.S.)--Wichita State University, College of Engineering, Dept. of Electrical Engineering and Computer Science
    URI
    http://hdl.handle.net/10057/10959
    Collections
    • CE Theses and Dissertations
    • EECS Theses and Dissertations
    • Master's Theses

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV