• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Graduate Student Research
    • ETD: Electronic Theses and Dissertations
    • Master's Theses
    • View Item
    •   Shocker Open Access Repository Home
    • Graduate Student Research
    • ETD: Electronic Theses and Dissertations
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Effects of UV light and moisture absorption on the impact resistance of three different carbon fiber-reinforced composites

    View/Open
    t14011_GEORGE_Jithin_SP14.pdf (3.220Mb)
    Date
    2014-05
    Author
    George, Jithin Mathew
    Advisor
    Asmatulu, Ramazan
    Metadata
    Show full item record
    Abstract
    Carbon fiber is extensively used in aircraft components and structures, where its superior strength-to weight ratio far exceeds that of any metal. Thirty percent of all carbon fiber is used in the aerospace industry. The purpose of this research was to determine the influence of material properties on the impact response of a laminate, whereby specimens were fabricated and cured under a vacuum and high temperature using three types of pre-impregnated (prepreg), carbon fibers, namely unidirectional fiber, plain weave woven fiber, and non-crimp fiber. Each carbon fiber panel, usually known for its low-impact properties, with respective type of prepregs, of 16 plies underwent impact testing using a low-velocity impactor and visual damage inspection by C-scan in order to measure the damage area and depth, before and after impact testing. These panels were treated with UV exposure and moisture conditioning for 20 days each. Water contact angles were taken into consideration to determine the hydrophobicity and hydrophillicity of the respective prepreg material. Experimental results and damage analysis show that UV exposure and moisture conditioning showcased the variation in impact response and behavior, such as load-carrying capacity, absorbed energy, and impact energy of the carbon fiber panels. This study illustrates that non-crimp carbon fiber laminates were far more superior relative to load capacity than woven and unidirectional laminates, with the NCF-AS laminate exhibiting the highest load capacity of 17,244 lb/in (pre-UV) with only 0.89% decrease after UV exposure. This same laminate also had a 1.54% decrease in sustaining impact and 31.4% increase in wettability of the panel. Moreover, the study shows how symmetric and asymmetric stacking sequences affect the impact behavior of non-crimp fiber laminates. These results may be useful for expanding the capacity of carbon fiber, lowering costs, and growing new markets, thus turning carbon fiber into a viable commercial product.
    Description
    Thesis (M.S.)--Wichita State University, College of Engineering, Dept. of Mechanical Engineering
    URI
    http://hdl.handle.net/10057/10957
    Collections
    • CE Theses and Dissertations
    • Master's Theses
    • ME Theses and Dissertations

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV