• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Engineering
    • Biomedical Engineering
    • BioMed Engineering Research
    • BIOMED Research Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Engineering
    • Biomedical Engineering
    • BioMed Engineering Research
    • BIOMED Research Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Microscopic bio-corrosion evaluations of magnesium surfaces in static and dynamic conditions

    Date
    2014-08
    Author
    Bontrager, Jordan
    Mahapatro, Anil
    Gomes, Anosh
    Metadata
    Show full item record
    Citation
    BONTRAGER, J., MAHAPATRO, A. and GOMES, A.S. (2014), Microscopic bio-corrosion evaluations of magnesium surfaces in static and dynamic conditions. Journal of Microscopy, vol. 255:no. 2:pp 104–115. doi: 10.1111/jmi.12142
    Abstract
    Biodegradable materials including biodegradable metals are continuously being investigated for the development of next generation cardiovascular stents. Predictive in vitro tests are needed that could evaluate potential materials while simulating in vivo conditions. In this manuscript we report the microscopic bio-corrosion evaluations of magnesium surfaces in static and dynamic conditions. A corrosion test bench was designed and fabricated and static and dynamic corrosion tests were carried out with samples of magnesium alloy. The fluid wall shear stress equation and the Churchill's friction factor equation were used to calculate the fluid velocity required to generate the desired shear stress on samples in the test bench. Static and dynamic corrosion tests at 24 and 72 h were carried out at 0.88 Pa shear stress mimicking the in vivo shear stress. Microscopic evaluations of the corroded surfaces were carried out by optical, scanning electron microscopy and energy dispersive X-ray spectroscopy to evaluate the corrosion behaviour and surface properties of the test samples. The surface and interface analysis of magnesium samples post test indicated that dynamic conditions prevented the build-up of corrosion by-products on the sample surface and the corrosion mechanism was uniform as compared to static conditions. The use of a masking element to restrict the exposed area of the sample didn't result in increased corrosion at the boundary. Thus, we have demonstrated the feasibility of the designed test bench as a viable method for bio-corrosion surface analysis under dynamic corrosion conditions for potential biodegradable cardiovascular stent materials.
    Description
    Click on the DOI link to access the article (may not be free).
    URI
    http://dx.doi.org/10.1111/jmi.12142
    http://hdl.handle.net/10057/10861
    Collections
    • BIOMED Research Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2022  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV