• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Graduate Student Research
    • ETD: Electronic Theses and Dissertations
    • Master's Theses
    • View Item
    •   Shocker Open Access Repository Home
    • Graduate Student Research
    • ETD: Electronic Theses and Dissertations
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Crushing behavior of corrugated laminated beams at different stroke rates

    View/Open
    t13098_Tan.pdf (3.110Mb)
    Date
    2013-12
    Author
    Tan, Kian Yip
    Advisor
    Keshavanarayana, Suresh R.
    Metadata
    Show full item record
    Abstract
    Crashworthiness has become an important aspect in vehicle design due to the stringent requirements on occupant safety under survivable accident scenarios. The uses of composite materials have increased due to their tailorability and high specific strength and stiffness. Variety of energy absorption devices have been investigated for their energy absorption characteristics. Literature suggests that corrugated beam geometry promotes stable crushing behavior and has the highest energy absorption capability. But a lack of consensus on the rate sensitivity of these devices exists and is mainly attributed to different material systems, specimen geometries, test apparatus used, etc. This experimental study addresses the progressive crushing of Newport NB321/7781 E-glass and Toray T700G/3900 plain weave fabric prepreg fiber-reinforced corrugated panel. The progressive crushing behavior is studied at quasi-static rates as well as dynamic loading rates up to 100in/s. Load rate effects, stacking sequence effects and laminate gross thickness effects on energy absorption of corrugated beams were investigated. The test data indicates that the specific energy absorption of corrugated beams is rate sensitive. Besides, modes of failure of corrugated beams were observed to be sensitive to test speed. Furthermore, stacking sequences of [0]n are superior in energy absorption compared to [45]n and thickness of the laminates were observed to affect the specific energy absorption.
    Description
    Thesis (M.S.)--Wichita State University, College of Engineering, Dept. of Aerospace Engineering
    URI
    http://hdl.handle.net/10057/10646
    Collections
    • AE Theses and Dissertations
    • CE Theses and Dissertations
    • Master's Theses

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV