• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Engineering
    • Industrial, Systems, and Manufacturing Engineering
    • ISME Faculty Scholarship
    • ISME Research Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Engineering
    • Industrial, Systems, and Manufacturing Engineering
    • ISME Faculty Scholarship
    • ISME Research Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Life cycle assessment of fertilization of corn and corn-soybean rotations with swine manure and synthetic fertilizer in Iowa

    Date
    2014-06-23
    Author
    Griffing, Evan M.
    Schauer, Richard Lynn
    Rice, Charles W.
    Metadata
    Show full item record
    Citation
    Griffing, Evan M.; Schauer, Richard Lynn; Rice, Charles W. 2014. Life Cycle Assessment of Fertilization of Corn and Corn–Soybean Rotations with Swine Manure and Synthetic Fertilizer in Iowa. Journal of Environmental Quality, vol. 43:no. 2:ppg 709-722
    Abstract
    Life cycle assessment is the predominant method to compare energy and environmental impacts of agricultural production systems. In this life cycle study, we focused on the comparison of swine manure to synthetic fertilizer as nutrients for corn production in Iowa. Deep pit (DP) and anaerobic lagoon (AL) treatment systems were compared separately, and urea ammonium nitrate (UAN) was chosen as the representative synthetic fertilizer. The two functional units used were fertilization of 1000 kg of corn in a continuous corn system and fertilization of a crop yielding 1000 kg of corn and a crop yielding 298 kg of soybean in a 2-yr corn-soybean rotation. Iowa-specific versions of emission factors and energy use were used when available and compared with Intergovernmental Panel on Climate Change values. Manure was lower than synthetic fertilizer for abiotic depletion and about equal with respect to eutrophication. Synthetic fertilizer was lower than manure for global warming potential (GWP) and acidification. The choice of allocation method and life cycle boundary were important in understanding the context of these results. In the DP system, methane (CH4) from housing was the largest contributor to the GWP, accounting for 60% of the total impact. When storage systems were compared, the DP system had 50% less GWP than the AL system. This comparison was due to reduction in CH4 emissions from the storage system and conservation of nitrogen. Nitrous oxide emissions were the biggest contributor to the GWP of UAN fertilization and the second biggest contributor to the GWP of manure. Monte Carlo and scenario analyses were used to test the robustness of the results and sensitivity to methodology and important impact factors. The available crop-land and associated plant nutrient needs in Iowa was compared with manure production for the current hog population. On a state-or county-wide level, there was generally an excess of available land. On a farm level, there is often an excess of manure, which necessitates long-distance transport.
    Description
    Click on the DOI link to access the article (may not be free).
    URI
    http://dx.doi.org/10.2134/jeq2013.04.0112
    http://hdl.handle.net/10057/10622
    Collections
    • ISME Research Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV