PHY Research Publications (from 2011)
Permanent URI for this collection
The Department of Mathematics and Statistics and the Department of Physics have merged into the Department of Mathematics, Statistics, and Physics in summer 2011. This collection includes publication dated 2011-. For previous years, look at the Department of Physics collection in SOAR
Browse
Recent Submissions
Item The DUNE far detector vertical drift technology Technical design report(IOP Publishing, Sissa (International School for Advanced Studies), Institute of Physics, 2024-08-09) Brugardt, D.; Meyer, Holger; Muether, Mathew; Roy, P.; Shivakoti, Sushil; Solomey, Nickolas; The DUNE collaborationDUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals.Item Doping liquid argon with xenon in ProtoDUNE Single-Phase: Effects on scintillation light(Institute of Physics, 2024) Abed, Abud A.; Abi, B.; Acciarri, R.; Acero, M.A.; Adames, M.R.; Adamov, G.; Adamowski, M.; Adams, D.; Adinolfi, M.; Adriano, C.; Aduszkiewicz, A.; Aguilar, J.; Aimard, B.; Akbar, F.; Allison, K.; Alonso Monsalve, S.; Alrashed, M.; Alton, A.; Alvarez, R.; Amar Es-Sghir, H.; Amedo, P.; Anderson, J.; Andrade, D.A.; Andreopoulos, C.; Andreotti, M.; Andrews, M.P.; Andrianala, F.; Andringa, S.; Anfimov, N.; Ankowski, A.; Antoniassi, M.; Antonova, M.; Antoshkin, A.; Aranda-Fernandez, A.; Arellano, L.; Arrieta Diaz, E.; Arroyave, M.A.; Asaadi, J.; Ashkenazi, A.; Asquith, L.; Atkin, E.; Auguste, D.; Aurisano, A.; Aushev, V.; Autiero, D.; Azfar, F.; Back, A.; Back, H.; Back, J.J.; Bagaturia, I.; Bagby, L.; Balashov, N.; Balasubramanian, S.; Baldi, P.; Baldini, W.; Baller, B.; Bambah, B.; Banerjee, R.; Barao, F.; Barenboim, G.; Barham Alzás P.; Barker, G.J.; Barkhouse, W.; Barr, G.; Barranco Monarca, J.; Barros, A.; Barros, N.; Barrow, D.; Barrow, J.L.; Basharina-Freshville, A.; Bashyal, A.; Basque, V.; Batchelor, C.; Bathe-Peters, L.; Battat, J.B.R.; Battisti, F.; Bay, F.; Bazetto, M.C.Q.; Bazo Alba, J.L.L.; Beacom, J.F.; Bechetoille, E.; Behera, B.; Belchior, E.; Bell, G.; Bellantoni, L.; Bellettini, G.; Bellini, V.; Beltramello, O.; Benekos, N.; Benitez Montiel, C.; Benjamin, D.; Bento Neves, F.; Berger, J.; Berkman, S.; Bernardini, P.; Bersani, A.; Bertolucci, S.; Betancourt, M.; Betancur Rodríguez, A.; Bevan, A.; Bezawada, Y.; Bezerra, A.T.; Bezerra, T.J.; Bhat, A.; Bhatnagar, V.; Bhatt, J.; Bhattacharjee, M.; Bhattacharya, M.; Bhuller, S.; Bhuyan, B.; Biagi, S.; Bian, J.; Biery, K.; Bilki, B.; Bishai, M.; Bitadze, A.; Blake, A.; Blaszczyk, F.D.; Blazey, G.C.; Blucher, E.; Boissevain, J.; Bolognesi, S.; Bolton, T.; Bomben, L.; Bonesini, M.; Bonilla-Diaz, C.; Bonini, F.; Booth, A.; Boran, F.; Bordoni, S.; Borges Merlo, R.; Borkum, A.; Bostan, N.; Bracinik, J.; Braga, D.; Brahma, B.; Brailsford, D.; Bramati, F.; Branca, A.; Brandt, A.; Bremer, J.; Brew, C.; Brice, S.J.; Brio, V.; Brizzolari, C.; Bromberg, C.; Brooke, J.; Bross, A.; Brunetti, G.; Brunetti, M.; Buchanan, N.; Budd, H.; Buergi, J.; Burgardt, D.; Butchart, S.; Caceres Vera, G.; Cagnoli, I.; Cai, T.; Calabrese, R.; Calcutt, J.; Calin, M.; Calivers, L.; Calvo, E.; Caminata, A.; Campanelli, W.; Campos Benitez, A.; Canci, N.; Capó, J.; Caracas, I.; Caratelli, D.; Carber, D.; Carceller, J.M.; Carini, G.; Carlus, B.; Carneiro, M.F.; Carniti, P.; Caro Terrazas, I.; Carranza, H.; Carrara, N.; Carroll, L.; Carroll, T.; Carter, A.; Casazza, D.; Castaño Forero, J.F.; Castaño, F.A.; Castillo, A.; Castromonte, C.; Catano-Mur, E.; Cattadori, C.; Cavalier, F.; Cavanna, F.; Centro, S.; Cerati, G.; Cervelli, A.; Cervera Villanueva, A.; Chakraborty, K.; Chalifour, M.; Chappell, A.; Charitonidis, N.; Chatterjee, A.; Chen, H.; Chen, M.; Chen, W.C.; Chen, Y.; Chen-Wishart, Z.; Cherdack, D.; Chi, C.; Chirco, R.; Chitirasreemadam, N.; Cho, K.; Choate, S.; Chokheli, D.; Chong, P.S.; Chowdhury, B.; Christian, D.; Chukanov, A.; Chung, M.; Church, E.; Cicala, M.F.; Cicerchia, M.; Cicero, V.; Ciolini, R.; Clair, J.; Clarke, P.; Cline, G.; Coan, T.E.; Cocco, A.G.; Coelho, J.A.B.; Cohen, A.; Collot, J.; Conley, E.; Conrad, J.M.; Convery, M.; Cooke, P.; Copello, S.; Cova, P.; Cox, C.; Cremaldi, L.; Cremonesi, L.; Crespo-Anadón, J.I.; Crisler, M.; Cristaldo, E.; Crnkovic, J.; Crone, G.; Cross, R.; Cudd, A.; Cuesta, C.; Cui, Y.; Cussans, D.; Dai, J.; Dalager, O.; Dallavalle, R.; da Motta, H.; Dar, Z.A.; Darby, R.; Da Silva Peres, L.; David, Q.; Davies, G.S.; Davini, S.; Dawson, J.; De Aguiar, R.; De Almeida, P.; Debbins, P.; De Bonis, I.; Decowski, M.P.; de Gouvêa, A.; De Holanda, P.C.; De Icaza Astiz, I.L.; De Jong, P.; De la Torre, A.; Delbart, A.; Delepine, D.; Delgado, M.; Dell'Acqua, A.; Delle Monache, G.; Delmonte, N.; De Lurgio, P.; Demario, R.; de Mello Neto, J.R.T.; DeMuth, D.M.; Dennis, S.; Densham, C.; Denton, P.; Deptuch, G.W.; De Roeck, A.; De Romeri, V.; Detje, J.P.; Devine, J.; Dharmapalan, R.; Dias, M.; Díaz, J.S.; Díaz, F.; Di Capua, F.; Di Domenico, A.; Di Domizio, S.; Di Falco, S.; Di Giulio, L.; Ding, P.; Di Noto, L.; Diociaiuti, E.; Distefano, C.; Diurba, R.; Diwan, M.; Djurcic, Z.; Doering, D.; Dolan, S.; Dolek, F.; Dolinski, M.J.; Domenici, D.; Domine, L.; Donati, S.; Donon, Y.; Doran, S.; Douglas, D.; Doyle, T.A.; Dragone, A.; Drielsma, F.; Duarte, L.; Duchesneau, D.; Duffy, K.; Dugas, K.; Dunne, P.; Dutta, B.; Duyang, H.; Dvornikov, O.; Dwyer, D.A.; Dyshkant, A.S.; Dytman, S.; Eads, M.; Earle, A.; Edayath, S.; Edmunds, D.; Eisch, J.; Englezos, P.; Ereditato, A.; Erjavec, T.; Escobar, C.O.; Evans, J.J.; Ewart, E.; Ezeribe, A.C.; Fahey, K.; Fajt, L.; Falcone, A.; Fani, M.; Farnese, C.; Farzan, Y.; Fedoseev, D.; Felix, J.; Feng, Y.; Fernandez-Martinez, E.; Ferraro, F.; Ferry, G.; Fields, L.; Filip, P.; Filkins, A.; Filthaut, F.; Fine, R.; Fiorillo, G.; Fiorini, M.; Fogarty, S.; Foreman, W.; Fowler, J.; Franc, J.; Francis, K.; Franco, D.; Franklin, J.; Freeman, J.; Fried, J.; Friedland, A.; Fuess, S.; Furic, I.K.; Furman, K.; Furmanski, A.P.; Gaba, R.; Gabrielli, A.; Gago, A.M.; Galizzi, F.; Gallagher, H.; Gallas, A.; Gallice, N.; Galymov, V.; Gamberini, E.; Gamble, T.; Ganacim, F.; Gandhi, R.; Ganguly, S.; Gao, F.; Gao, S.; Garcia-Gamez, D.; García-Peris, M.Á.; Gardiner, S.; Gastler, D.; Gauch, A.; Gauvreau, J.; Gauzzi, P.; Ge, G.; Geffroy, N.; Gelli, B.; Gent, S.; Gerlach, L.; Ghorbani-Moghaddam, Z.; Giammaria, P.; Giammaria, T.; Gibin, D.; Gil-Botella, I.; Gilligan, S.; Gioiosa, A.; Giovannella, S.; Girerd, C.; Giri, A.K.; Giugliano, C.; Giusti, V.; Gnani, D.; Gogota, O.; Gollapinni, S.; Gollwitzer, K.; Gomes, R.A.; Gomez Bermeo, L.V.; Gomez Fajardo, L.S.; Gonnella, F.; Gonzalez-Diaz, D.; Gonzalez-Lopez, M.; Goodman, M.C.; Goswami, S.; Gotti, C.; Goudeau, J.; Goudzovski, E.; Grace, C.; Gramellini, E.; Gran, R.; Granados, E.; Granger, P.; Grant, C.; Gratieri, D.R.; Grauso, G.; Green, P.; Greenberg, S.; Greer, J.; Griffith, W.C.; Groetschla, F.T.; Grzelak, K.; Gu, W.; Guarino, V.; Guarise, M.; Guenette, R.; Guerard, E.; Hagaman, L.; Hahn, A.; Haiston, J.; Hakenmueller, J.; Hamernik, T.; Hamilton, P.; Hancock, J.; Happacher, F.; Harris, D.A.; Hartnell, J.; Hartnett, T.; Harton, J.; Hasegawa, T.; Hasnip, C.; Hatcher, R.; Hayrapetyan, K.; Hays, J.; Hazen, E.; He, M.; Heavey, A.; Heeger, K.M.; Heise, J.; Henry, S.; Hernandez Morquecho, M.A.; Herner, K.; Hewes, V.; Higuera, A.; Hilgenberg, C.; Hillier, S.J.; Himmel, A.; Hinkle, E.; Hirsch, L.R.; Ho, J.; Hoff, J.; Holin, A.; Holvey, T.; Hoppe, E.; Horton-Smith, G.A.; Hostert, M.; Houdy, T.; Howard, B.; Howell, R.; Hristova, I.; Hronek, M.S.; Huang, J.; Huang, R.G.; Hulcher, Z.; Ibrahim, M.; Iles, G.; Ilic, N.; Iliescu, A.M.; Illingworth, R.; Ingratta, G.; Ioannisian, A.; Irwin, B.; Isenhower L.; Ismerio Oliveira, M.; Itay, R.; Jackson, C.M.; Jain, V.; James, E.; Jang W.; Jargowsky, B.; Jena, D.; Ji, X.; Jiang, C.; Jiang, J.; Jiang, L.; Jipa, A.; Joaquim, F.R.; Johnson, W.; Jones, B.; Jones, R.; José Fernández, D.; Jovancevic, N.; Judah, M.; Jung, C.K.; Junk, T.; Jwa, Y.; Kabirnezhad, M.; Kaboth, A.C.; Kadenko, I.; Kakorin, I.; Kalitkina, A.; Kalra, D.; Kamiya, F.; Kandemir, M.; Kaplan, D.M.; Karagiorgi, G.; Karaman, G.; Karcher, A.; Karyotakis, Y.; Kasai, S.; Kasetti, S.P.; Kashur, L.; Katsioulas, I.; Kauther, A.; Kazaryan, N.; Ke, L.; Kearns, E.; Keener, P.T.; Kelly, K.J.; Kemp, E.; Kemularia, O.; Kermaidic, Y.; Ketchum, W.; Kettell, S.H.; Khabibullin, M.; Khan, N.; Khvedelidze, A.; Kim, D.; Kim, J.; King, B.; Kirby, B.; Kirby, M.; Klein, J.; Kleykamp, J.; Klustova, A.; Kobilarcik, T.; Koch, L.; Koehler, K.; Koerner, L.W.; Koh, D.H.; Kolupaeva, L.; Korablev, D.; Kordosky, M.; Kosc, T.; Kose, U.; Kostelecký, V.A.; Kothekar, K.; Kotler, I.; Kovalcuk, M.; Kozhukalov, V.; Krah, W.; Kralik, R.; Kramer, M.; Kreczko, L.; Krennrich, F.; Kreslo, I.; Kroupova, T.; Kubota, S.; Kubu, M.; Kudenko, Y.; Kudryavtsev, V.A.; Kuhlmann, S.; Kumar, J.; Kumar, P.; Kumaran, S.; Kunze, P.; Kunzmann, J.; Kuravi, R.; Kurita, N.; Kuruppu, C.; Kus, V.; Kutter, T.; Kvasnicka, J.; Labree, T.; Lackey, T.; Lambert, A.; Land, B.J.; Lane, C.E.; Lane, N.; Lang, K.; Langford, T.; Langstaff, M.; Lanni, F.; Lantwin, O.; Larkin, J.; Lasorak, P.; Last, D.; Laudrain, A.; Laundrie, A.; Laurenti, G.; Lavaut, E.; Lawrence, A.; Laycock, P.; Lazanu, I.; Lazzaroni, M.; Le, T.; Leardini, S.; Learned, J.; Lineros, R.A.; Ling, J.; Lister, A.; Littlejohn, B.R.; Liu, H.; Liu, J.; Liu, Y.; Lockwitz, S.; Lokajicek, M.; Lomidze, I.; Long, K.; Lopes, T.V.; Lopez, J.; López de Rego, I.; López March, N.; Lord, T.; LoSecco, J.M.; Louis, W.C.; Lozano Sanchez, A.; Lu, X.-G.; Luk, K.B.; Lunday, B.; Luo, X.; Luppi, E.; Maalmi, J.; MacFarlane, D.; Machado, A.A.; Machado, P.; Macias, C.T.; Macier, J.R.; MacMahon, M.; Maddalena, A.; Madera, A.; Madigan, P.; Magill, S.; Magueur, C.; Mahn, K.; Maio, A.; Major, A.; Majumdar, K.; Man, M.; Mandujano, R.C.; Maneira, J.; Manly, S.; Mann, A.; Manolopoulos, K.; Manrique Plata, M.; Manthey Corchado, S.; Manyam, V.N.; Marchan, M.; Marchionni, A.; Marciano, W.; Marfatia, D.; Mariani, C.; Maricic, J.; Marinho, F.; Marino, A.D.; Markiewicz, T.; Das Chagas Marques, F.; Marsden, D.; Marshak, M.; Marshall, C.M.; Marshall, J.; Martín-Albo, J.; Martinez, N.; Martinez Caicedo, D.A.; Martínez López, F.; Martínez Miravé, P.; Martynenko, S.; Mascagna, V.; Massari, C.; Mastbaum, A.; Matichard, F.; Matsuno, S.; Matteucci, G.; Matthews, J.; Mauger, C.; Mauri, N.; Mavrokoridis, K.; Mawby, I.; Mazza, R.; Mazzacane, A.; McAskill, T.; McConkey, N.; McFarland, K.S.; McGrew, C.; McNab, A.; Meazza, L.; Meddage, V.C.N.; Mehta, B.; Mehta, P.; Melas, P.; Mena, O.; Mendez, H.; Mendez, P.; Méndez, D.P.; Menegolli, A.; Meng, G.; Messier, M.D.; Metallo, S.; Metcalf, J.; Metcalf, W.; Mewes, M.; Meyer, Holger; Miao, T.; Miccoli, A.; Michna, G.; Mikola, V.; Milincic, R.; Miller, G.; Miller, W.; Mineev, O.; Minotti, A.; Miralles, L.; Miranda, O.G.; Mironov, C.; Miryala, S.; Miscetti, S.; Mishra, C.S.; Mishra, S.R.; Mislivec, A.; Mitchell, M.; Mladenov, D.; Mocioiu, I.; Mogan, A.; Moggi, N.; Mohanta, R.; Mohayai, T.A.; Mokhov, N.; Molina, J.; Molina Bueno, L.; Montagna, E.; Montanari, A.; Montanari, C.; Montanari, D.; Montanino, D.; Montaño Zetina, L.M.; Mooney, M.; Moor, A.F.; Moore, Z.; Moreno, D.; Moreno-Palacios, O.; Morescalchi, L.; Moretti, D.; Moretti, R.; Morris, C.; Mossey, C.; Mote, M.; Moura, C.A.; Mouster, G.; Mu, W.; Mualem, L.; Mueller, J.; Muether, Mathew; Muheim, F.; Muir, A.; Mulhearn, M.; Munford, D.; Munteanu, L.J.; Muramatsu, H.; Muraz, J.; Murphy, M.; Murphy, T.; Muse, J.; Mytilinaki, A.; Nachtman, J.; Nagai, Y.; Nagu, S.; Nalbandyan, M.; Nandakumar, R.; Naples, D.; Narita, S.; Nath, A.; Navrer-Agasson, A.; Nayak, N.; Nebot-Guinot, M.; Nehm, A.; Nelson, J.K.; Neogi, O.; Nesbit, J.; Nessi, M.; Newbold, D.; Newcomer, M.; Nichol, R.; Nicolas-Arnaldos, F.; Nikolica, A.; Nikolov, J.; Niner, E.; Nishimura, K.; Norman, A.; Norrick, A.; Novella, P.; Nowak, J.A.; Oberling, M.; Ochoa-Ricoux, J.P.; Oh, S.; Oh, S.B.; Olivier, A.; Olshevskiy, A.; Olson, T.; Onel, Y.; Onishchuk, Y.; Oranday, A.; Osbiston, M.; Osorio Vélez, J.A.; Otiniano Ormachea, L.; Ott, J.; Pagani, L.; Palacio, G.; Palamara, O.; Palestini, S.; Paley, J.M.; Pallavicini, M.; Palomares, C.; Pan, S.; Panda, P.; Panduro Vazquez, W.; Pantic, E.; Paolone, V.; Papadimitriou, V.; Papaleo, R.; Papanestis, A.; Papoulias, D.; Paramesvaran, S.; Paris, A.; Parke, S.; Parozzi, E.; Parsa, S.; Parsa, Z.; Parveen, S.; Parvu, M.; Pasciuto, D.; Pascoli, S; Pasqualini, L.; Pasternak, J.; Patrick, C.; Patrizii, L.; Patterson, R.B.; Patzak, T.; Paudel, A.; Paulucci, L.; Pavlovic, Z.; Pawloski, G.; Payne, D.; Pec, V.; Pedreschi, E.; Peeters, S.J.M.; Pena Perez, A.; Pennacchio, E.; Penzo, A.; Peres, O.L.G.; Perez Gonzalez, Y.F.; Pérez-Molina, L.; Pernas, C.; Perry, J.; Pershey, D.; Pessina, G.; Petrillo, G.; Petta, C.; Petti, R.; Pia, V.; Pickering, L.; Pietropaolo, F.; Pimentel, V.L.; Pinaroli, G.; Pinchault, J.; Plows, K.; Plunkett, R.; Pollack, C.; Pollman, T.; Pompa, F.; Pons, X.; Poonthottathil, N.; Poppi, F.; Pordes, S.; Porter, J.; Potekhin, M.; Potenza, R.; Pozimski, J.; Pozzato, M.; Prakash, S.; Prakash, T.; Pratt, C.; Prest, M.; Psihas, F.; Pugnere, D.; Qian, X.; Raaf, J.L.; Radeka, V.; Rademacker, J.; Radics, B.; Rafique, A.; Raguzin, E.; Rai, M.; Rajaoalisoa, M.; Rakhno, I.; Rakotondravohitra, L.; Ralte, L.; Ramirez Delgado, M.A.; Ramson, B.; Rappoldi, A.; Raselli, G.; Ratoff, P.; Ray, R.; Razafinime, H.; Rea, E.M.; Real, J.S.; Rebel, B.; Rechenmacher, R.; Reggiani-Guzzo, M.; Reichenbacher, J.; Reitzner, S.D.; Rejeb Sfar, H.; Renner, E.; Renshaw, A.; Rescia, S.; Resnati, F.; Restrepo, D.; Reynolds, C.; Ribas, M.; Riboldi, S.; Riccio, C.; Riccobene, G.; Ricol, J.S.; Rigan, M.; Rincón, E.V.; Ritchie-Yates, A.; Ritter, S.; Rivera, D.; Rivera, R.; Robert, A.; Rocabado Rocha, J.L.; Rochester, L.; Roda, M.; Rodrigues, P.; Rodriguez Alonso, M.J.; Rodriguez Rondon, J.; Rosauro-Alcaraz, S.; Rosier, P.; Ross, D.; Rossella, M.; Rossi, M.; Ross-Lonergan, M.; Roy, N.; Roy, P.; Rubbia, C.; Ruggeri, A.; Ruiz Ferreira, G.; Russell, B.; Ruterbories, D.; Rybnikov, A.; Saa-Hernandez, A.; Saakyan, R.; Sacerdoti, S.; Sahoo, S.K.; Sahu, N.; Sala, P.; Samios, N.; Samoylov, O.; Sanchez, M.C.; Sánchez Bravo, A.; Sanchez-Lucas, P.; Sandberg, V.; Sanders, D.A.; Sankey, D.; Santoro, D.; Saoulidou, N.; Sapienza, P.; Sarasty, C.; Sarcevic, I.; Sarra, I.; Savage, G.; Savinov, V.; Scanavini, G.; Scaramelli, A.; Scarff, A.; Schefke, T.; Schellman, H.; Schifano, S.; Schlabach, P.; Schmitz, D.; Schneider, A.W.; Scholberg, K.; Schukraft, A.; Schuld, B.; Segreto, E.; Selyunin, A.; Senise, C.R.; Sensenig, J.; Shaevitz, M.H.; Shanahan, P.; Sharma, P.; Kumar, R.; Shaw, K.; Shaw, T.; Shchablo, K.; Shepherd-Themistocleous, C.; Sheshukov, A; Shi, W.; Shin, S.; Shivakoti, Sushil; Shoemaker, I.; Shooltz, D.; Shrock, R.; Siddi, B.; Silber, J.; Simard, L.; Sinclair, J.; Sinev, G.; Singh, J.; Singh, J.; Singh, L.; Singh, P.; Singh, V.; Singh Chauhan, S.; Sipos, R.; Sironneau, C.; Sirri, G.; Siyeon, K.; Skarpaas, K.; Smedley, J.; Smith, E.; Smith, J.; Smith, P.; Smolik, J.; Smy, M.; Snape, M.; Snider, E.L.; Snopok, P.; Snowden-Ifft, D.; Soares Nunes, M.; Sobel, H.; Soderberg, M.; Sokolov, S.; Salinas Solano, C.J.; Söldner-Rembold, S.; Soleti, S.R.; Solomey, Nickolas; Solovov, V.; Sondheim, W.E.; Sorel, M.; Sotnikov, A.; Soto-Oton, J.; Sousa, A.; Soustruznik, K.; Spinella, F.; Spitz, J.; Spooner, N.J.C.; Spurgeon, K.; Stalder, D.; Stancari, M.; Stanco, L.; Steenis, J.; Stein, R.; Steiner, H.M.; Steklain Lisbôa, A.F.; Stepanova, A.; Stewart, J.; Stillwell, B.; Stock, J.; Stocker, F.; Stokes, T.; Strait, M.; Strauss, T.; Strigari, L.; Stuart, A.; Suarez, J.G.; Subash, J.; Surdo, A.; Suter, L.; Sutera, C.M.; Sutton, K.; Suvorov, Y.; Svoboda, R.; Swain, S.K.; Szczerbinska, B.; Szelc, A.M.; Sztuc, A.; Taffara, A.; Talukdar, N.; Tamara, J.; Tanaka, H.A.; Tang, S.; Taniuchi, N.; Tapia Casanova, A.M.; Tapia Oregui, B.; Tapper, A.; Tariq, S.; Tarpara, E.; Tatar, E.; Tayloe, R.; Tedeschi, D.; Teklu, A.M.; Tena Vidal, J.; Tennessen, P.; Tenti, M.; Terao, K.; Terranova, F.; Testera, G.; Thakore, T.; Thea, A.; Thiebault, A.; Thompson, A.; Thorn, C.; Timm, S.C.; Tiras, E.; Tishchenko, V.; Todorovi?, N.; Tomassetti, L.; Tonazzo, A.; Torbunov, D.; Torti, M.; Tortola, M.; Tortorici, F.; Tosi, N.; Totani, D.; Toups, M.; Touramanis, C.; Tran, D.; Travaglini, R.; Trevor, J.; Triller, E.; Trilov, S.; Truncali, D.; Trzaska, W.H.; Tsai, Y.; Tsai, Y.-T.; Tsamalaidze, Z.; Tsang, K.V.; Tsverava, N.; Tu, S.Z.; Tufanli, S.; Turner, J.; Tuzi, M.; Tyler, J.; Tyley, E.; Tzanov, M.; Uchida, M.A.; Ureña González, J.; Urheim, J.; Usher, T.; Utaegbulam, H.; Uzunyan, S.; Vagins, M.R.; Vahle, P.; Valder, S.; Valdiviesso, G.A.; Valencia, E.; Valentim, R.; Vallari, Z.; Vallazza, E.; Valle, J.W.F.; Van Berg, R.; Van de Water, R.G.; Forero, D.V.; Van Nuland-Troost, M.; Varanini, F.; Vargas Oliva, D.; Varner, G.; Vasina, S.; Vaughan, N.; Vaziri, K.; Vega, J.; Ventura, S.; Verdugo, A.; Vergani, S.; Verzocchi, M.; Vetter, K.; Vicenzi, M.; Vieira de Souza, H.; Vignoli, C.; Villa, E.; Viren, B.; Vizcaya-Hernandez, A.; Vrba, T.; Vuong, Q.; Waldron, A.V.; Wallbank, M.; Walsh, J.; Walton, T.; Wang, H.; Wang, J.; Wang, L.; Wang, M.H.L.S.; Wang, X.; Wang, Y.; Warburton, K.; Warner, D.; Warsame, L.; Wascko, M.O.; Waters, D.; Watson, A.; Wawrowska, K.; Weber, A.; Weber, M.; Wei, H.; Weinstein, A.; Wenzel, H.; Westerdale, S.; Wetstein, M.; Whalen, K.; Whilhelmi, J.; White, A.; White, A.; Whitehead, L.H.; Whittington, D.; Wilking, M.J.; Wilkinson, A.; Wilkinson, C.; Wilson, F.; Wilson, R.J.; Winter, P.; Wisniewski, W.; Wolcott, J.; Wolfs, J.; Wongjirad, T.; Wood, A.; Wood, K.; Worcester, E.; Worcester, M.; Wospakrik, M.; Wresilo, K.; Wret, C.; Wu, S.; Wu, W.; Wu, W.; Wurm, M.; Wyenberg, J.; Xiao, Y.; Xiotidis, I.; Yaeggy, B.; Yahlali, N.; Yandel, E.; Yang, K.; Yang, T.; Yankelevich, A.; Yershov, N.; Yonehara, K.; Young, T.; Yu, B.; Yu, H.; Yu, J.; Yu, Y.; Yuan, W.; Zaki, R.; Zalesak, J.; Zambelli, L.; Zamorano, B.; Zani, A.; Zapata, O.; Zazueta, L.; Zeller, G.P.; Zennamo, J.; Zeug, K.; Zhang, C.; Zhang, S.; Zhao, M.; Zhivun, E.; Zimmerman, E.D.; Zucchelli, S.; Zuklin, J.; Zutshi, V.; Zwaska, R.; The DUNE collaboration; Guerzoni, M.; Guffanti, D.; Guglielmi, A.; Guo, B.; Guo, Y.; Gupta, A.; Gupta, V.; Gurung, G.; Gutierrez, D.; Guzowski, P.; Guzzo, M.M.; Gwon, S.; Haaf, K.; Hadavand, H.; Haenni, R.; LeCompte, T.; Lee, C.; Legin, V.; Lehmann Miotto, G.; Lehnert, R.; Leigui de Oliveira, M.A.; Leitner, M.; Leon Silverio, D.; Lepin, L.M.; Li, J.-Y.; Li, S.W.; Li, Y.; Liao, H.; Lin, C.S.; Lindebaum, D.; Habig, A.Doping of liquid argon TPCs (LArTPCs) with a small concentration of xenon is a technique for light-shifting and facilitates the detection of the liquid argon scintillation light. In this paper, we present the results of the first doping test ever performed in a kiloton-scale LArTPC. From February to May 2020, we carried out this special run in the single-phase DUNE Far Detector prototype (ProtoDUNE-SP) at CERN, featuring 720 t of total liquid argon mass with 410 t of fiducial mass. A 5.4 ppm nitrogen contamination was present during the xenon doping campaign. The goal of the run was to measure the light and charge response of the detector to the addition of xenon, up to a concentration of 18.8 ppm. The main purpose was to test the possibility for reduction of nonuniformities in light collection, caused by deployment of photon detectors only within the anode planes. Light collection was analysed as a function of the xenon concentration, by using the pre-existing photon detection system (PDS) of ProtoDUNE-SP and an additional smaller set-up installed specifically for this run. In this paper we first summarize our current understanding of the argon-xenon energy transfer process and the impact of the presence of nitrogen in argon with and without xenon dopant. We then describe the key elements of ProtoDUNE-SP and the injection method deployed. Two dedicated photon detectors were able to collect the light produced by xenon and the total light. The ratio of these components was measured to be about 0.65 as 18.8 ppm of xenon were injected. We performed studies of the collection efficiency as a function of the distance between tracks and light detectors, demonstrating enhanced uniformity of response for the anode-mounted PDS. We also show that xenon doping can substantially recover light losses due to contamination of the liquid argon by nitrogen. © 2024 The Author(s).Item Double Higgs boson production via photon fusion at muon colliders within the triplet Higgs model(American Physical Society, 2024) Samarakoon, Bathiya; Figy, Terrance M.In this paper, we present predictions for scattering cross section the of Higgs boson pair production via photon fusion at future muon colliders, focusing specifically the production processes μ+μ-→γγ→h0h0,A0A0. We investigated the impact of three choices the photon structure functions on cross-section predictions for a range model input parameters within the theoretical framework of the Higgs triplet model [Phys. Rev. D 84, 095005 (2011)PRVDAQ1550-799810.1103/PhysRevD.84.095005; Eur. Phys. J. C 79, 940 (2019)EPCFFB1434-604410.1140/epjc/s10052-019-7471-3; Phys. Rev. D 22, 2227 (1980)PRVDAQ0556-282110.1103/PhysRevD.22.2227; Phys. Rev. D 25, 2951 (1982)PRVDAQ0556-282110.1103/PhysRevD.25.2951]. © 2024 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the "https://creativecommons.org/licenses/by/4.0/"Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Funded by SCOAP3.Item Mössbauer spectral analysis and Rietveld structural refinement for cationic distribution of Cr-Co ferrites(Elsevier B.V., 2024-02) Beera, Chandra Sekhar; Dhanalakshmi, B.; Jyothula, Sudhakar; Vujji, Avinash; Ramesh, S.; Rao, B. Parvatheeswara; Hamdeh, Hussein H.Sol-gel autocombustion was used to prepare Chromium-substituted Cobalt ferrite nanoparticles with the chemical formulas CoCr${_x}$Fe$_{2-x}$O$_4$, with x (0.1 to 0.5 in steps of 0.1).The samples were systematically examined for providing information related to their structural aspects X-ray diffractometry and energy dispersive spectrometry and for determination of accurate ionic distribution using Mössbauer spectrometry and Rietveld structural refinement. The patterns obtained from the energy dispersive spectra ensure that the elemental concentrations of the samples match well with the ionic proportions set in the empirical formulae. Cationic distributions were first made by Mössbauer spectral analysis using hyperfine fields and then by Rietveld analysis based on integrated intensity ratios and profile matching. The results of the study are explained in terms of the compositional variations, cationic inversion degree associated with the fine particle nature of the materials and the relevant cationic distributions as a result of chromium substituted cobalt ferrite.Item An efficient method to create high-density nitrogen-vacancy centers in CVD diamond for sensing applications(Elsevier Ltd, 2023-12) Karki, Prem Bahadur; Timalsina, Rupak; Dowran, Mohammadjavad; Aregbesola, Ayodimeji E.; Laraoui, Abdelghani; Ambal, KapildebThe negatively charged Nitrogen-Vacancy (NV$^−$) center in diamond is one of the most versatile and robust quantum sensors suitable for quantum technologies, including magnetic field and temperature sensors. For precision sensing applications, densely packed NV$^−$ centers within a small volume are preferable due to benefiting from 1/$√N$ sensitivity enhancement ($N$ is the number of sensing NV centers) and efficient excitation of NV centers. However, methods for quickly and efficiently forming high concentrations of NV$^−$ centers are in the development stage. We report an efficient method for creating high-density NV$^−$ centers production from a relatively low nitrogen concentration based on high-energy photons generated from Ar$^+$ plasma source. This study was done on type-IIa, single crystal, chemical vapor deposition (CVD)-grown diamond substrates with an as-grown nitrogen concentration of 1 × 10$^{17}$ cm$^{−3}$. We created high NV$^−$ density (~20,000 NVs over the diffraction limited sample volume) distributed homogeneously over 150–200 μm deep from the diamond surface. The plasma-created NV$^−$s in CVD diamond have a spin-lattice relaxation time (T$_1$) of 5 ms and a spin-spin coherence time (T$_2$) of 4 μs. We measure a DC magnetic field sensitivity of ∼104 nT Hz$^{-1/2}$, an AC magnetic field sensitivity of ∼0.12 pT Hz$^{-1/2}$ and demonstrate real-time magnetic field sensing at a rate over 10 mT s$^{−1}$ using the diffraction limited sample volume.