The Haunting Erotics of Gastronomic Desire as Bodily Penetration

Neal Kazuhiro Akatsuka
Department of Anthropology
University of Hawai‘i at Manoa

The feeling of hope towards vegetables grows larger with each passing year. Numerous benefits are once again being recognized – even things unheard of in the past like vegetable’s anti-oxidation effect and food fiber’s importance have become widely known. On the other hand, forced produce, chemical fertilizers and drugs, genetic recombination [idenshikumikae], the safety of imported vegetables, and of course, even the global environment, direct our attention to problems and fears as well. – Itagi Toshitaka, Karada ni oishii: Yasai no benrichou (Delicious for the body: A useful book of vegetables)

Natto [fermented soybeans] is a really traditional Japanese food and considered to be a healthy food for Japanese. It is in our everyday meals . . . One day in high school my mother bought some natto and she said, “Did you know there is genetically engineered natto nowadays?” And I thought, “Oh what is that?” That was the first time I was interested in and had an impression of a genetically modified organism . . . I thought it was scary because I was never concerned with it before. I did not know what it was or how it was made . . . I was really glad my mother did not buy any. – Watanabe-san, a female college student in her early twenties, in a 2008 interview

To step out of my dormitory, tucked away in one of the many side streets around Waseda University, is to start a journey into the urban jungle of Tokyo. A sea of cement monoliths that frame the labyrinthine alleyways deflects the sunlight like a canopy of forest leaves. Black asphalt smoothed under the perpetual treading of feet and wheels covers the roads like undergrowth. Within my first few steps outside into this urban sprawl lies a signpost of what lurks beyond. Present the entirety of my time in Tokyo, a Japanese Communist Party campaign poster on the house across the street offers a simple slogan in large print - “Safe food from the land of Japan” (Anzen na shokuryou wo nihon no taichi kara). If as Nancy Munn (1992, 74) argues, objects physicalize networks of polarized cultural values or “qualisigns,” then the poster materializes the interconnected gastronomic values in Japan of safety and domestic produce at the same time as it reifies the linkage between risk and foreign produce. While the smaller print reveals an agenda specifically oriented toward trade issues – “Cost Security” and “Stop import liberalization” – the poster gestures toward the image of the numerous gastronomic threats from abroad (e.g. China) penetrating into Japan and Japanese bodies that preoccupied the thoughts my informants. Rice tainted with poisonous mold and pesticide residue.1 Dumplings (gyouza)

1 In September 2008 Mikasa Foods, an Osaka-based company, admitted to selling rice products made with tainted rice from foreign countries like China and Vietnam. The rice contained illegally high levels of pesticide residue and aflatoxin (a toxin produced from fungus) (Japan Times 2008b). This event spawned intense media coverage for months as indexed by how it warranted its own section, “Accidentally Contaminated Rice” (Jiko kome), on the news website, Aratanisu, which compares articles on similar topics from the three major Japanese newspapers Asahi Shimbun, Yomiuri Shimbun, and Nihon Keizai Shim bun.
contaminated with pesticide residue.2 Milk product with toxic industrial chemicals.3 Such events solidify the belief that the safety of food in Japan is in peril given how much of it does not come from domestic agriculture.4 As I pass this poster on my way to the main street, I cannot help but think about safe food and where I might stumble across it (or not).

To navigate the alleyways, roads, and buildings in the Tokyo metropolis where the “land of Japan” is covered in asphalt and concrete then is to simultaneously navigate potential gastronomic dangers in the everyday pursuit of food to eat. As Michel de Certeau (1984) argues, walking in the city involves an engagement with a social order constructed by systems of power - in this case, the domestic and foreign government agencies (e.g. Ministry of Agriculture, Forestry, and Fisheries [MAFF], Ministry of Health, Labor, and Welfare [MHLW], United States Department of Agriculture [USDA]), agribusinesses, and food industries that structures food consumption in everyday life in Japan.

In part, this entails a reliance on imported food and feed produced through biotechnology (i.e. genetic modification). In the ethnographic present, there are no domestic GM crops being grown for commercial sale in Japan. All GM crops being consumed are imported. While there are crops, such as GM rice, being grown for scientific research and development, these crops are restricted to monitored test plots and thus not available to be consumed as food and feed. Thus, in a USDA Foreign Agricultural Service GAIN (Global Agriculture Information Network) Report, Suguru Sato (2008, 2) reports that

Japan annually imports 16 million metric tons of corn and 4.2 million metric tons of soybeans valued at over $3 billion. Approximately two-thirds of the imported corn and three-quarters of the imported soybeans are ‘biotech’ [i.e. genetically modified]. Japan also imports billions of dollars worth of processed foods that contain biotech-derived oils, sugars, yeasts, enzymes, and other ingredients.

This makes Japan the world’s largest per capita importer of such food and feed, and the United States, from which Japan heavily relies upon for such imports, an intimate contributor to food consumption in Japan. In 2007, the 16.2 million metric tons of corn imported came from the United States, where it is estimated that 80 percent of the corn crop is comprised of genetically modified (hereafter, GM) varieties (Sato 2007, 3). This does not mean that 80 percent of all corn directly eaten by Japanese consumers is recombinant – only 30 percent of imported corn is used for human consumption and the Japanese food industry has typically paid a premium for segregated, “non-GMO” (genetically modified organism) corn for this purpose to avoid consumer backlash (Sato 2008, 3).

2 Several people suffered from food poisoning in Hyogo and Chiba Prefectures after consuming frozen gyoza imported from China by the Tokyo-based JT Foods Co. in January 2008. Police investigation later discovered that the gyoza contained residue of the unapproved pesticide, methamidophos (\textit{Japan Times} 2008a).

3 In September 2008, four food products that used milk imported from China by the Osaka-based Marudai Food Co. were found to contain melamine, a toxic industrial chemical used in fire retardant materials (\textit{Japan Times} 2008c).

4 As of 2006, Japan has one of the lowest food self-sufficiency rates based on calories among developed countries at only 39 percent (Nagata 2008).
However, these figures also do not suggest that no GM food is directly consumed by humans due to the labeling policy for GM food enacted in 2001. Food manufacturers must apply a label that declares its product is recombinant only if over 5 percent of the total weight of the food item consists of a GM ingredient; furthermore, oil derived from approved GM soy, canola, cottonseed, and corn are exempt. This enables, for example, an estimated 10 percent of soy sauce manufacturers to use GM soy meal without specifically labeling their product as such (4). Furthermore, in light of inflating global premiums for segregated, non-GM corn, the Japanese food industry is being forced to reconsider their former practice of using only non-GM corn for human consumption. In April 2008, several large Japanese cornstarch processors announced they would use GM corn in a limited amount of food items such as high fructose corn sweetener and beer (significantly, these are food items that would be exempt from labeling) (3). As global agricultural practice continues to shift toward the usage of GM crops,6 more and more Japanese companies will be forced to incorporate GM ingredients into food products whether due to finances or the simple material scarcity of non-GM crops. The material presence of GM food in Japan is thus ubiquitous and by all indications will only grow more so in the future.

And yet, I never once encountered a GM food item, or more precisely, one labeled and advertised as such in food venues such as my local supermarket. If GM food is figured as one of the gastronomic threats faced by Japanese consumers (which all of my informants believed, regardless of class), then it seemed to be a specter that haunted Japan, heard only in rumors and the media, but never knowingly encountered by consumers. One of the college students I interviewed, Suzuki-san, even went so far as to say that she had never eaten any GM food before (and later added, would not want to). Do Suzuki-san and I simply navigate around the city and food venues with such remarkable skill that we can avoid eating any GM food? In this chapter, I will demonstrate that this expert navigation of the food market is highly unlikely and instead is related to the problem of locating recombinant food in Japan. As such, I trace the contours of the gastronomic threat of GM food for Japanese consumers as a haunting absent presence that restructures the urban space of Tokyo. The nature of this polluting threat shapes how food products (e.g. strawberries, tomatoes, okra, and potatoes) are made gastronomically desirable in food venues such as my neighborhood Santoku supermarket. In this context, I will argue that the (im)possibility of conscious consumption of GM food by Japanese consumers should be understood by how consumers become interpelled (Althusser 2001 [1971]) within an intimate actor-network (Law 1992; Latour 2005) of entangled, mutually penetrating bodies premised in part upon the exclusion of GM food. However, issues of accessibility complicate the navigation of the urban city in search of desirable food, wherein class remains a significant roadblock.

The Haunting of Absent Presences

According to a survey by the Baiteku Jouhou Fukyuukai (Council for Biotechnology Information Japan) (2005, 8), the top reason cited by 62.1 percent of Japanese consumers in 2004

5 The politics of labeling and food safety evaluation is analyzed further in Chapter 3.

6 The number of countries that plant “biotech” crops has steadily increased from six in 1996 to twenty-five in 2008. Between 2007 and 2008, the global area devoted to such crops increased by 9.4 percent from 114.3 million hectares to 125 million hectares. In 2008, the United States leads this trend as the largest producer at 62.5 million hectares, followed by Argentina at 21.0 million and Brazil at 15.8 million (James 2008, ix, xi).
for having a scary (kowai) and bad (warui) image of GM food was the expression, “Genetically modified food,” itself (“Idenshihikumikae shokuhin” to iu kotoba). The sheer evocative power of this expression urges an examination of its linguistic construction and semiotic mapping. The Japanese word for genetic modification, “idenshihikumikae,” can be broken down into “idenshi” (gene) and “kumikae(ru)” (to recombine, rearrange, make over again). The word focuses on the rearrangement of genes, a deviation from and disruption of an original genetic order. The disruption of this original order indexes a pollution of the pure moral order that signals danger (Douglas 2002 [1966]). The expression itself thus contains its own threat to a certain extent on a semantic level.

The same might be said though of the English term, “genetic modification,” which has a different nuance from “idenshihikumikae” in Japan. This is not surprising given the difference in history, culture, and arrangement of signs between Japan and the English-speaking world. Furthermore, at least between Japan and the United States, there is a difference in food labeling practice (Japan requires labels for GM food, while the United States does not), which positions the two terms differently within everyday life (e.g. in terms of familiarity). Although both concepts refer to the disruption of a genetic order then, they are mapped with different associations that get drawn upon in, for example, activist critiques of GM food. For example, the Greenpeace USA campaign in the United States against GM food often references the image of Frankenstein’s Creature and deploys the term “Frankenfood.” In a campaign poster criticizing the cereal maker Kellogg’s for its use of GM grains (see Figure 1), Kellogg’s trademark Tony the Tiger is redesigned as FrankenTony, serving up an unappetizing bowl of green “Undetected! Unlabeled!” “Genetically Modified Frosted Fakes of ‘Corn.’”

One of the salient messages in this poster is that genetic modification presents a monstrous threat due to the tampering with nature (as the scientist, Victor Frankenstein, does in Mary Shelley (1998)’s 1818 classic, Frankenstein). The recombination of Tony the Tiger, marketed as a friend of children who offers them sweet cereal, with FrankenTony, portrayed as a deviant who offers children deceptively sweet, but polluted, frosted “fakes” of “corn,” demonstrates how genetic modification threatens the not only everyday gastronomy (starting every day with threatening food), but the lives of children in particular. It is significant though that this threat is conveyed through the ugly and distasteful appearance of Frankenstein’s Creature (and according to this specific Greenpeace campaign, Kellogg’s monster, FrankenTony). The threat becomes salient through the monster’s external form, which is undeniably scary.

In contrast, activist critique in Japan tends to focus on an insidious internal change and the deception of the external form. The mascot of the Greenpeace Japan anti-GMO ad campaign is a pod of three smiling peas, which all appear normal and decidedly cute – at first (Screenshot 1 in Figure 2). Gradually however, one pea begins to frown malevolently while horns sprout from its head (Screenshot 2 and 3), at which point “idenshihikumikae” flashes beneath the pod (Screenshot 3). The moral of the story is that Japan does not need GM food (Screenshot 4 and 5).
In this ad campaign, GM food is portrayed as a metamorphosing demon that might pass as normal, unthreatening, and even cute, and thus the consumer might accidentally ingest without knowing. Malevolence emerges gradually in a slip from the natural to the monstrous, which troubles polarities like natural versus unnatural, real versus fake, and safe versus risky. The differing images employed by Greenpeace demonstrate that if the threat of GM food in the United States is configured as its clear danger and vivid unnaturalness, the threat of GM food in Japan is located in its problematic ambiguity and gradual emergence.

The nature of the threat in Japan shapes and is shaped by the presentation of food in supermarkets as the Japanese food industry is intimately aware of the negative backlash that can result from the stigmatized usage of GM ingredients and the connected desire for non-GM ingredients.
In fact, out of a fear of a consumer backlash, retailers, particularly large supermarket chains, demanded the food industry to supply non-biotech foods - even for products that do not have to be labeled, which in turn resulted in procurement of non-biotech raw ingredients by importers. In fact, in the past, many retailers use consumer concerns to their advantage by marketing store brand products as “safer” and “more natural” than those provided by their competitors. [Sato 2008, 18]

However, this has also lead to questionable practices that aim to generate consumer desire.

In 2004, Japan Fair Trade Commission (JFTC) conducted a survey for the labeling of eggs. A growing number of egg suppliers have started using labeling that make aesthetic or safety claims. After the survey, JFTC found that labeling such as, “No GMO corn or soymeal is used” and “clean feed - without postharvest pesticides in main feed ingredients” are misleading consumers about adherence to higher standards and/or actually quality. [Sato 2008, 12]

As these examples show, industry practice has been reconfigured vis-à-vis recombinant food to emphasize the purity, safety, and naturalness of food products, which entails a disavowal of genetic recombination. Since the institution of mandatory labeling of genetically recombinant products in 2001, this has resulted in consumers being left with only a trace of the presence of GMOs via phrases akin to that found on the ingredient list of a bag of Calbee potato chips I purchased at a local supermarket – “Potato (Not genetically modified)” (Jagaimo [Idenshikumikae denai]).

The repetition of seeing food in the supermarket labeled “Not genetically modified” proffers both an absence and a presence of genetically recombinant material. In a nation haunted with the possibility of GMOs given the heavy dependence on foreign imported crops like soy (recognized by many people I interviewed as one of the most widely grown GM crops in the world and in particular, the US), there is an impression of a vacuum where these goods, and by extension the space where they are being sold (e.g. a supermarket), have been sanitized. However, Derrida (1994) argues that the nature of the specter offers only an incomplete assurance as its partial and deferred presence produces a threat that cannot be temporally fixed.

At bottom, the spectre is the future, it is always to come, it presents itself only as that which could come or come back . . . Before knowing whether one can differentiate between the spectre of the past and the spectre of the future, of the past present and the future present, one must perhaps ask oneself whether the spectrality effect does not consist in undoing this opposition, or even this dialectic, between actual, effective presence and its other. [36]

The absent presence, or present absence, of the specter (in this case, GMOs) “never simply exists as such, but produces its effects only after the fact, in a repetition that becomes its own spectral origin” (Ivy 1995, 22). While the disavowal on the food label enables the construction of a pure, non-GMO space and time within the supermarket, it simultaneously renders other spaces and times suspect. For example, Ono-kun, a college student in his early twenties, believes that he must have eaten GM food before because “not all restaurants offer information about whether food is GM or not.” Tanaka-san, a hairdresser in her sixties, mentions that she does not like to eat at McDonalds because its products are not labeled with information about GMOs. As
Tanaka-san assumes that fast food venues would use cheap ingredients, she thinks the company must use GMOs, which are in her mind cheap in multiple ways (e.g. price, quality).

Time and space not explicitly marked with a disavowal are thus experienced with a haunting sensation, whereby the absent presence of recombinant food always threatens to (possibly) become presented and incorporated physically into Japanese bodies. For my informants, food scandals like those previously mentioned were foregrounded not only as contextual past events, but with the potential to be experienced with a renewed immediacy, a past that could repeat (in a recombinant fashion) in the present and into the future with embodied consequences. Goto-san, a Japanese-language lecturer in her fifties, worries about not only eating GM food in the present, but also about the long-term effects of such consumption on her body and the bodies of children who may unknowingly consume it over an extended period of time. According to Ogawa-kun, a disc jockey in his thirties, its cumulative effects might produce something akin to the pollen allergy (kafunsho) he believes he developed due to continuous exposure to pollen from cedar trees planted near Tokyo.

The potential incorporation of GM food also extends beyond the physical body to bodily practices, whereby GMOs threaten to become habituated and embodied. While no prefecture currently prohibits the planting of GM seeds, laws and guidelines regulating its planting in combination with local community pressure have effectively foreclosed the possibility. For example, in 2004 Miyai Yoshimasa planned on cultivating twelve tons of the government-approved Roundup Ready (i.e. herbicide resistant) variety of GM soybeans on his 4.6-hectare plot of farmland in Naganuma, Hokkaido. This would have been the first crop of GM soybeans grown on a full-scale in Japan. By October however, Miyai had given up his plans due to criticisms by local farmers and concerned consumers; as well as the threatened loss of state grants for the harvest (a loss of approximately ten million yen\(^7\) for Miyai), which would not have been accepted by the two nationwide agricultural cooperative associations (they do not deal in GM soybeans) (Tsuchiya 2004).

A common argument was that planting such seeds and selling such food would not only associate Miyai’s land with the negative affect of genetic modification, but also the whole region of Naganuma (a major soybean cultivation center in Japan) and its food brand through pollen drift. This sentiment is captured in the words of Miyata Isami, president of the Hokkaido Prefecture Union of Agricultural Cooperatives (JA Hokkaido Chuokai). “It would be a big problem if [the GM soybeans’] pollen crossbreeds with neighborhood soybeans, or if that kind of rumor spreads and damages sales of Hokkaido farm produce” (quoted in Tsuchiya 2004). Pollen grains carried by wind and insects from GM crops may fertilize and contaminate another non-GM field, eventually spreading and tarnishing a regional claim to domestic authenticity that assumes a non-GM product. This fear makes every pollen grain count, which can be seen in the contested calculus described by Tomiko Yamaguchi and Fumiaki Suda (2009) of a minimum isolation distance between GM and non-GM fields in Hokkaido.

According to the results of the 2006 GM rice field trials presented by one public research station, 301 out of 50,000 grains were gene transferred from GM crops at a distance of 26 m[eters] (the isolation distance determined by the central government’s regulations),

\(^7\) Approximately $90,562.15 in US dollars in October 2004.
while twelve grains were found gene-transferred at a distance of 300 m(eters) (the isolation distance in Hokkaido Prefecture). The question became how to interpret the twelve grains that were gene transferred (Hokkaido Prefecture, 2007). Some interpreted these results as showing that the gene transfer is reasonably low, while others interpreted the gene-transfer as evidence of harm to the environment. [17]

While this isolation distance (as well as those for GM corn and sugar beets grown in Hokkaido) is already many times larger than those set by MAFF (Sato 2008, 14), twelve grains of pollen prove for some effectively twelve grains too many. As Miyata recognized, pit against produce that can disavow the use of genetic recombination, each grain would haunt Hokkaido farm produce in supermarkets with rumors of presence that would translate into avoidance and abjection within a network where postindustrial nature and gastronomic desire emerge in part through the assumption of pure, non-GM domestic produce and an absenting of foreign GM food.

Mary Douglas (2002 [1966]) argues that food taxonomies, such as that between GMO and non-GMO deployed by food labels, serve to maintain the social order and create a distinction between purity and pollution. The transgression of this boundary in turn signals danger and desire. If recombinant genes are absent presences that haunt food in Japan and must be constantly disavowed, then the divide between GMO and non-GMO is also rendered constantly suspect and vulnerable. The constant threat to this divide creates a continuous transgression of multiple boundaries (e.g. bodily, social, moral, genetic) by the sheer possibility of the threat’s materialization (whether now or in the future).

The parameters of the simultaneous fascination and repulsion produced through this continuous transgression can be seen within popular culture. While not explicitly mentioning genetic modification, a recent successful ad campaign created by the Japanese advertising company, Dentsu, draws upon the affect of the phenomenon through bean-dog hybrids called mameshiba. Creatures with the body of a bean (mame) and face of a dog (shiba inu), mameshiba come in over twenty shapes and sizes (or rather, beans and dogs), such as Guriinpiishiba (Green pea shiba), Kuromameshiba (Black bean shiba), Piinasshiba (Peanut shiba), and Edamameshiba (Green soybean shiba). In the original commercials, from which over 60 products in various media forms have emerged, the scene typically begins in an everyday scenario where food is consumed, which is suddenly interrupted by the emergence of a mameshiba in the food.

For example, in the commercial featuring Edamameshiba, a businessman enters a pub where he has a beer and a side dish of green soybeans. As he picks up one of the pods and squeezes out a bean, a mameshiba emerges as if from a womb with a flourish. As the camera focuses on the round black eyes, round green face, and oval-shaped green ears, the viewer is introduced to the cute and disarmingly vulnerable visage of Edamameshiba (see Figure 3). At least until it queries in a childish tone with, “Hey, know what?” (Nee, shitteru?). Suddenly the view switches to the trembling face of the businessman, an enlarged drop of sweat on his forehead, and the cute, but suddenly unsettling face of the...
creature reflected in his glasses. He hesitantly inquires as to what the little bean-dog has to say, which is, “The inside of a kangaroo’s pouch is supposedly very stinky.” As the businessman places the whole pod (including Edamameshiba) back on the table, a wave of disgust rushes over him as symbolized by the descent of a shadow over the general scene. The scene ends as he rises to leave with a “Thank you for the meal” (Gochisousama), signaling the end of the meal, as well as his appetite. The commercial itself ends with Edamameshiba bouncing and giggling within the Chinese character for bean above an Internet address to learn more about these creatures.

Beyond the mere hybridity of the mameshiba, the parallel with GM food extends to the “affective labor” of the creature’s hail (Allison 2009). In both cases, the hail (i.e. “Hey, know what?” and “Not genetically modified”) interpellates in an Althusserian fashion the consumer into a particular gastronomic relationship with food. This relationship is characterized by the emergence of the threat of pollution, or “matter out of place,” whether of hybrid body parts or genes (Douglas 2002 [1966], 44). However, there are important differences that set mameshiba apart from GM food. While both evoke a troubling sense of disease and dis-ease, mameshiba embodies this threat as a cute, yet monstrous spectacle. The very embodied presence of the mameshiba is integral to its threat, which is incorporated into not only the local food setting (e.g. a pub) but also into language (e.g. Edamameshiba within the Chinese character for bean), and thus the Lacanian Symbolic Order of Japan itself. Mameshiba asserts itself as part of the world and when it asks “Hey, know what?” it is not only a question to the consumer of random trivia, but also an assertion of its physical presence. Recombinant food on the other hand, presented as only a possibility that is immediately disavowed through the ubiquitous “Not genetically modified” label, defers its entrance into the world ad infinitum. Its threat is disembodied and diffuse. Interpellated consumers can never know for sure where GM food exists, and thus how to navigate toward or away from them. Navigation of the urban city becomes a problem of maneuvering around targets that cannot be located within spaces that cannot be taken for granted as pure.

The Erotics of Gastronomic Desire as Bodily Penetration

![Santoku Supermarket](image)

Figure 4. The front of Santoku Supermarket in Nishi Waseda. Credit: © Santoku Co.

A Santoku chain supermarket that lies along the main street leading to Takadanobaba station near my dormitory in Nishi Waseda constructs its gastronomic space with knowledge of
this navigational problem. As the consumer passes through from the streets into the air-conditioned space, there is a deluge of fluorescent light, staccato of pressed keys and beeps from cash registers, and glimmers of plastic packaging amongst shifting bodies rolling carts or holding plastic baskets. Somewhere between walking from my dormitory into the supermarket, the urban space becomes suffused with the promise of food I might not just safely eat, but savor and desire. This promise, I would argue, is generated by the organization and presentation of food within the supermarket space, which constructs a division between the supermarket and the rest of Japan. Shopping for groceries becomes figured as a departure from the gastronomic threats alluded to by the Communist Party campaign poster outside to gastronomic purity, safety, and desire within. If the outside city is filled with ambiguity as to what is good to eat, the supermarket and the food products within it attempt to convince the consumer that such is not the case in here.

The organization of this supermarket in some ways resembles a lab maze (sans rat) as shelves and refrigerators order space, at least initially, into interconnected aisles of related food products. From the left-side entrance, I will enter a route filled with prepared food like baked bread, fried chicken, lunch sets (obento), and sandwiches, which then splits into aisles of various processed and preserved food items (e.g. chips, candy, soy sauce, tea) and drinks. At night, there are frequently businessmen who meander through this entrance and amongst the prepared food, which they can heat for dinner in a microwave conveniently located beyond the cash registers on one of the tables used to bag groceries near the exit. From the right-side entrance (see Figure 5), I am initially ensconced in aisles of fruits and vegetables, lead past refrigerators with soy products like bean curd (toufu) and preserved vegetables, and further along the way, beef and various types of seafood. Past the seafood aisle, I can finally access the rest of the supermarket, which includes the numerous aisles of processed and preserved food that lie in its center. This entrance, usually filled with housewives (sometimes still in their aprons), is the one I take when I go grocery shopping.

As I make my way through the right-side entrance on a sunny afternoon in April 2009, I immediately notice a couple of fruit stands that lie to the left of the doorway. Vibrant red strawberries arranged just so in glistening plastic packaging and stacked in neat rows. Plump tomatoes that one sees as much as the carefully applied food labels which declare, “Delicious, safe [anzen], and healthy vegetables.” This claim is anchored by an overhead signboard that notes that the producer, Kennou Yasai, is located in Shizuoka Prefecture. The arrangements of these signs and the way they advertise their product demonstrates, as Theodore Bestor (2004, 147) observes, that “reassurances of safety and predictability are encoded in preferences for domestic products and in the reliance on ideal form as an index of both purity and culinary authenticity.” These strawberries and tomatoes offer to fulfill the Communist Party campaign slogan – “Safe food from the land of Japan.”
As the signboard and plastic packaging demonstrate though, this offer is reinforced not only through discourse, but also material practices and technology. In one of the wooden stands across from the tomatoes and strawberries are packages of okra with a small black and white pixilated square on their food labels (see Figure 6).

Designed by the Japanese company, Denso-Wave, in 1994 these squares are actually two-dimensional bar codes, or QR codes, now broadly used not only in vehicle manufacturing (its initial application), but also commercial tracking and advertisements. The QR code stores information, such as a website URL, which can be scanned with a cell phone camera to redirect the phone’s browser to a programmed URL. The QR code on one of the packages of okra for example, redirects my cell phone’s browser to the website of the producer, Mametarou, where I can learn about where the okra came from (Northern Kanto, centered around Saitama and Gunma prefectures), the agricultural production methods used (for more than three years, agrochemicals, herbicides, and chemical fertilizer have not been used in accordance with Japanese organic standards), biographical information on the producers (the primary members are the Suga father-son duo who have used “natural farming methods” [shizen nouhou] for over 60 years), and when other seasonal produce by Mametarou is available.

Beyond just providing more detailed information to the curious consumer relevant to the okra, the QR code “hardlinks” consumer, urban Tokyo, okra, farmers, and a rural farm in Northern Kanto together in a network. This technological practice gestures toward the postindustrial production of nature and food, which must deal with what Kalyanakrishnan Sivaramakrishnan and Ismael Vaccaro (2006, 303) describe as

the postindustrial problem of nature. . . the problem of wilding and taming nature at the same time, and doing so for a growing human population, spread across different classes of society, for whom there are no stable referents for nature in their remembered past or in spatial proximity to their living environment.

The QR code generates these social relations between producer and consumer in virtual space, and thus act as what Anne Allison (2009, 100) calls “social prosthetics” in “an era of immaterial labor . . . an age when the family, the community, the (stable) workplace are dissolving both in fact and in their utility for capitalism.” As both nature and society dissolve as concrete entities into the concrete underfoot in the urban space, the affective power of the network the QR code coordinates derives in part from the stability it offers. For example, in linking a consumer in urban Tokyo with the Northern Kanto countryside, the QR code grounds the consumer within popular discourses of the authentic Japanese-ness of the rural countryside, where produce like tomatoes and okra are what they should be and should be what they are presented as – pure edible pleasure which is not just safe to eat, but good to eat. As gastronomic threats such as GM
food problematize epistemological categories of organic versus synthetic, safe versus risky, fake versus real, and natural versus unnatural, the food objects that can not only offer the stabilization of these taxonomies, but a clarity of what is good to eat, become desirable by contrast. This is evident in how a message from Mametarou on “the safety of domestic crops” (anzen na kokusan genryou) asserts its organic (and therefore non-recombinant) food is desirable:

Under the Suga family leadership that has achieved results for over 60 years with its natural farming methods, and with a dedication to seeds harvested personally, we will continue to produce delicious agricultural products that are not only ‘safe’ [anzen], but moreover ‘high-value food’ [eiyouka no takai].

With the Suga family at the hull, the implication is that the consumer should eat this food because they can rest assured that the food is clearly safe, natural, and of high-value. While the term “high-value” could be taken as ambiguous, it could also be seen as polysemous because it promises everything the consumer could want from food and more. Desirable food in this case offers not just a source of physical sustenance (which any food item, including a recombinant one, could potentially fulfill), but also an opportunity to demonstrate a commitment to virtuous food from the domestic land. That is, to shop for high-value food is to desire the virtuous, and thus the domestic and non-recombinant. This is clear in a response by Ogawa-kun when I ask why he would not want to serve imported GM food to his own children.

I strongly believe that parents have to be aware of the issues that might affect their children’s health or their future. That is the responsibility that comes with parenting . . . I think every parent should be aware of the dangers and possibilities that might affect . . . or haunt their kids.

In the same interview, his wife adds that she would not want their children to eat GM food and thus become the first experimental subjects. For the Ogawas, GM food contains possible dangers and unknowns that render it less a food than an experimental scientific object. This renders GM food antithetical to responsible parenting that would seek to protect children from harm. A good parent would pass by a GMO for non-recombinant, high-value domestic food.

Walking past the refrigerators that line the produce and meat aisle and into one of the center aisles near the cash registers with my cell phone in hand, I spot another QR code on a package of potato chips produced by the Tokyo-based Calbee Foods Company. A snap with my phone camera redirects the browser and my attention to the homepage of the company. Even more elaborate than the Mametarou website, the available information includes descriptions of the types of potatoes used in products, introductions to and messages from the Calbee factories, introductions to and messages from individual farmers that grow potatoes for Calbee in various prefectures, and descriptions of the land where the potatoes are grown (i.e. place name, population, land area, tourist information, and social history). For example, according to the website, 291,058 people live on 677.79 square kilometers in Hakodate City in Hokkaido Prefecture, where Irish cobbler potatoes [danshaku imo] were first cultivated in Japan in the early twentieth century by the baron, Kawada Ryoukichi. Hakodate City is part of the Oshima Subprefecture, where farmers like Nishitani Yukihiro labor to produce the potatoes for potato chips. Nishitani says the following in his personal message (Calbee Foods Co., Ltd.):
“The Producer’s Thoughts and Cares”

Since my father grew potatoes, I also began growing potatoes as his successor. Besides potatoes, I grow azuki beans and cabbage. In order to cultivate a lot of delicious potatoes and prevent disease, I am careful to use potato varieties resistant to disease as well as not repeatedly plant a field with the same crop each year. Furthermore, I work to raise the fertility of the land by spreading fertilizer and feed-use millet on the soil.

“A Message to the Customer”

These potatoes are made with all my effort [isshoukenmei] and love [aijou]. Please eat a lot and love the potato chips made from our potatoes.

“The Pride of the Producing Area”

In the summer, there is the Hakodate Port Festival. The fireworks are really pretty. You can even see these fireworks from the fields! The scenery is also nice. This is a really fine plot of land!

These are not just any potato chips, but chips created from potatoes that were carefully selected and grown with sweat and love by farmers like Nishitani. One can imagine that these chips are desirable because they have a story reflected in the smile of Nishitani as he stands on the same field where he can see fireworks exploding in the summer sky. That is, these chips are derived from potatoes imbued with the effort and love of real people in real places living real lives. Nishitani cultivates both a potato and a narrative the consumer can consume and love from the very “land of Japan” that eludes Japanese consumers in Tokyo.

These potatoes are produced through the foregrounding not of disembodied laboring hands as the metonym of capitalist production, but embodied hands with faces and names that can offer the consumer the intimacy that comes from the labor of the producer’s kokoro [heart, soul]. Similar to an enka performance, the hardlinked produce does the "work of intimacy-making . . . [which] involves creating the facade of a social relationship and making it believable” (Yano 2002, 78). The produce proffers an intimate actor-network of human and non-human actors that links the consumer, family farmers (e.g. the Sugas, Nishitani and his father), the countryside, an agricultural field, and the food itself. As a result, food is presented not as an isolated object, but rather as a link to the labor of particular people in a particular place living particular lives, as Nishitani’s profile demonstrates. These are people and places one can form a relationship with, and thus food one can and should trust. This network naturalizes a particular relationship between humans and their food premised upon the knowability of what will penetrate into the body's boundaries.

This could be called an erotics of gastronomic desire as what counts as good to eat results from the entanglement of bodies, human and non-human, that engender a social linkage through mutual penetration - the penetration of the voyeuristic consumer gaze into the lives and practices of farmers as well as the penetration of the farmers’ produce into the consumer's body. In light of this gastronomic arrangement, imported GMOs are like foreign sexually transmitted diseases (STDs) that threaten to penetrate with undetectable stealth, and thus without the consumer’s knowledge, into the domestic entanglement of bodies. For example a large poster in Shibuya for the “STOP STDs” campaign features a picture of a pretty, skimpily clad female model that no
one would assume has a STD since she looks healthy and attractive. The implicit message within the ad is that anyone (or in the case of GMOs, any food) can potentially be a threat. Bodily penetration, whether by food or another body, is an act of both potential pleasure and danger to the body and must therefore be scrutinized and mediated. In this sense, what condoms are for the protection from STDs, food labels and QR codes are for eating safe (non-GM) food produced in Japan.

Genetically recombinant food is marginalized insofar as it is treated as a food that cannot be domesticated into Japan and Japanese bodies, at least without consequences. Searching through the Calbee website leads one to the “Food Science Diary” of the Calbee Research and Design Development Engineering Section, where factory workers write about everyday tasks involved in their jobs. Shokora, who flashes a friendly smile via her digital avatar, introduces herself in an entry dated August 19, 2008.

Hello, my name is Shokora. Come to think of it, I still have not introduced my job to everyone. At this time, I want to simply introduce with a bit of seriousness what I regularly do as part of my job. I wonder if the frozen gyoza incident is fresh in your memory? With what standards does everyone choose food? Safety? Taste? Cost? At Calbee, we put a lot of effort into our safety checks so that people can feel at ease [anshin] as they eat snacks. My job is to check that Calbee products are not using genetically modified crops or mixing in raw materials that cause allergic reactions... As I am endeavoring everyday so everyone can enjoy their snack time from the bottom of their hearts, please eat our potato chips and other products [poteto chippusu toutou, yoroshiku onegai shimasu ne]. [Calbee Foods Co., Ltd. 2008]

Shokora works hard so that everyone can enjoy and feel at ease with Calbee potato chips, which she points out means that she must make sure that Calbee products do not contain GM crops (i.e. GM potato) or equally horrible raw materials that cause allergies. Calbee has standards just like everyone else – after all, it does not want another food crisis akin to the frozen dumpling incident to descend upon its consumers. With Shokora’s help, no problematic GMOs will make their way into a Japanese consumer’s body from eating Calbee products.

The Economics of Access and Roadblocks to Desirable Penetration

While Japanese consumers may desire to avoid GM food, their actual ability to navigate its gastronomic threat within the urban city is contingent upon their material circumstances. As the glass doors slide shut behind me, the last traces of cool air from the air-conditioning blown away by a passing car, I go over my receipt for the produce I purchased. As delicious (safe, and healthy!) as the Kennou tomato I purchased looked surrounded by signboards, food labels, and QR codes that espoused its virtues of gastronomic desirability, I cannot help but pause at the price of a single tomato of said kind – 306 yen. The glass doors to the supermarket and the postindustrial narrative of gastronomic desire it contained within suddenly looked more like a glass ceiling for the limited income of a college student like me.

8 Shokora is referring to the aforementioned food scandal in 2008 involving imported frozen dumplings tainted with unapproved pesticide residue.

9 Approximately $3.12 in US dollars when I bought the tomato in April 2009.
Sanitized spaces exclude more than one kind of recombinant body – food commodities as well as people who cannot afford (at least occasionally) to not ingest and thus embody GM food. This is explicitly clear when I later visit a restaurant run by a consumer cooperative in Chiba. Connected to the cooperative store, the restaurant is small, but cozy with an open kitchen that lies adjacent to a few sparsely decorated wooden tables. As I trail in through the doors alongside activists, cooperative members, and a television camera crew, ready for a meal after walking through a nearby port in search of stray GM canola, I immediately notice a poster on a pillar next to the register that declares the restaurant in bold English, “NON-GMO.” Significantly, a short translation in Japanese of the English term (“NON-GMO means not GMO (Genetically Modified Organisms), or not idenshikumikae”) is written under the declaration in small font. The possibility of a recombinant presence in the immediate space is disavowed in such a way that it is rendered unintelligible to most Japanese, who would not only be unable to comprehend the English acronym by itself, but also the small Japanese translation that does not offer an explanation of what the term “idenshikumikae” means. The poster further notes that the restaurant uses “safe food” from the cooperative and as much as possible will not use GM ingredients, sanitizing the immediate space of an unexplained, but probably worth excluding (if only because the restaurant has deemed it so), recombinant presence.

As we talk over our non-GM lunches and discuss the potential health and ecological problems of GM food though, I cannot help but notice that our voices are the only ones to be heard in the restaurant. Our little group sits alone at our table before, during, and after our meal despite the time being a prime lunch hour. While there may be numerous reasons why the restaurant is empty on this particular day, the silence that permeates the room in between our words nonetheless feels pregnant with the multiple exclusions of GM food, people not part of the consumer cooperative, and people unable to afford the prices on the menu. I am welcomed as a guest of the cooperative, but as one of the canola event organizers pays for the group’s meal at the register, I know that on any other day I would have to pass up this restaurant for another within my income and status as a non-member.

To see and avoid the absented presence of GM food in food labels, QR codes, and restaurant posters is to therefore access a world of mediated bodily penetration, a network that not everyone can afford. Despite his concern over the possible effects on his body and the environment, Ono-kun asserts that “it might [have an] effect, but I believe I will not die of GMOs in a few years, so it is not the main point to consider, as opposed to price (and sometimes the place [where the food is made]).” While the concern over genetically recombinant food spans class (unlike in the US), which reflects in part its ubiquity in the public space, not everyone can afford to pay too much attention. Laughing over the ambivalence of his attitudes toward GMOs, Ono-kun offers, “maybe it is because I am a poor college student?!” Recombinant bodies matter in a different manner when one cannot afford to shop for the gastronomically desirable, diffusing the promise of pleasure, safety, and naturalness if only a little into the asphalt and cement of the urban space.

10 The search I participated in alongside these concerned actors for stray GM canola dropped by transport trucks en route to a holding silo at a port in Chiba and the genetic testing of retrieved samples are the subjects of Chapter 4.
Conclusion

Walking around a city haunted by the absent presence of recombinant food is less about navigating around locatable material objects than through discursively purified lacunae. These gaps structure the navigation for food along a path heightened by both desire and danger because the spaces one travels through are always threatened by the possibility of future contamination. As Miyai found out when his plan to grow GM soybeans in Hokkaido came under fire, purity can unravel and stigma can be engendered even from a single grain of pollen, or a single rumor, floating in the wind. This is as much about the pollen grain taking root in agricultural fields as into the narrative of a non-recombinant intimate entanglement of penetrating bodies known as the “land of Japan.”

The problem with this narrative though is that the materiality of GM food, literally tons of imported GM crops, seems to melt into the air and get filtered out into the streets. The lacunae become more real than the food itself. Consumers like Suzuki-san can thus believe they have never eaten GM food because if the discourses they are being fed by food labels, QR codes, and posters are taken as true, then they are indeed not. The disjuncture between the discourses of absent presence and the ubiquitous material presence of GM food reveals how GM food cannot be taken for granted as a fixed concept. In the next chapter, I analyze the current food labeling law and government food safety evaluations to explore how definitional struggles over what counts as recombinant (and thus deserving of a food label or extra scientific analysis) produce material and semiotic trouble and naturalize GM food as specters.
Works Cited

Allison, Anne

Althusser, Louis

Baiteku Jouhou Fukyuukai (Council for Biotechnology Information Japan)

Bestor, Theodore

Calbee Foods Co., Ltd. Seisansha no PROFILE (Producer profile)

Certeau, Michel de

Derrida, Jacques

Douglas, Mary

Itagi, Toshitaka, ed.

Ivy, Marilyn

James, Clive

Japan Times
2008c Melamine Found in Four Marudai Products. September 27.
Latour, Bruno

Law, John

Munn, Nancy

Nagata, Kazuaki

Sato, Suguru

Sivaramakrishnan, Kalyanakrishnan and Ismael Vaccaro

Tsuchiya, Makoto

Yamaguchi, Tomiko and Fumiaki Suda

Yano, Christine