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ABSTRACT 
 
 

 In this thesis, the performance of a decentralized system was analyzed based upon the 

design of the controller, either a reduced-order model or a full-order model. The singular 

perturbation technique was used to obtain the reduced-order model of a decentralized system. 

Then this model was used to design a controller for state feedback. Since this controller was the 

reduced-order model of the system, it was implemented based on the full-order model by 

padding zeroes. Thus, the controller was an approximation. Hence, a performance analysis was 

conducted to verify the near approximation of the design using the singular perturbation 

technique. To check the sensitivity of the design, the performance of the system using the 

controller designed on the full-order system was compared with the performance of the system 

using the controller designed on the reduced-order model. A comparison of the results showed 

that the effectiveness of the reduced-order model design can be verified and checked as to 

whether it is giving the required approximate results for a lower-cost controller design. 
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CHAPTER 1 
 

INTRODUCTION 
 
 

1.1 Motivation and Objective 
 
 Currently, most systems in practical scenarios are both complex in nature and large in 

terms of their parameters. These are referred to as large-scale systems. Several methods are used 

to analyze these systems. One method is to consider the entire system as an interconnection of 

subsystems, which allows for simplified computations. Such a system, which is divided into 

individual subsystems, is known as a decentralized system. Controlling the decentralized system 

is much simpler because of each subsystem’s local controller and is economical because it does 

not involve tedious data gathering, storage requirements, and computational procedures. 

Although the full-order decentralized control is easy to compute, sometimes it is costly if the 

system has a very large number of subsystems, which in turn need controllers. Hence, if the 

system is having slow- and fast-response transients, a reduced-order model can be obtained using 

the singular perturbation technique. Thus, the cost of controller will be reduced at the price of 

some accuracy. The accuracy of the system control depends on the value of epsilon (ε), the 

parameter of the singular perturbation technique. 

 The main objective of this thesis was to compare the performance analysis of a system 

when the controller was designed using both a full-order model and a reduced-order model. 

Based on the results comparison, the accuracy of the reduced-order model design was verified 

with that of decentralized control. 

1.2 Overview 

 In this thesis, controller design and performance analysis of a decentralized system is 

presented. Chapter 2 provides a review of the theoretical background for a decentralized control 
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system, the singular perturbation technique, and the decentralized singularly perturbed model. In 

Chapter 3, design of a decentralized control for a full-order system is given along with a 

numerical example. Chapter 4 provides the procedure for controller design using a singular 

perturbation technique for both state-feedback and output-feedback systems. An example is 

provided to explain the procedure numerically. In Chapter 5, a decentralized singularly perturbed 

system is considered, and a controller is designed using the two above-mentioned methods. 

Comparison of performance is done with an illustrated example. Chapter 6 presents the 

conclusions and suggestions for future work. 
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CHAPTER 2 
 

THEORETICAL BACKGROUND 
 
 

2.1 Introduction 
 
 In this chapter, some essential theoretical concepts that will be used in the following 

chapters are presented. These methods are helpful in designing a controller for a full-order 

system. First, a decentralized system is explained and concepts of the decentralized control 

system are given. Second, the singular perturbation technique is explained. This method was 

used to obtain a reduced-order model from a full-order model. Feedback control for a reduced-

order model is discussed, as well as how to implement it on a full-order model. Third, the details 

of a decentralized singularly perturbed model are introduced. Based on these basic ideas, the 

thesis work will be presented in later chapters. 

2.2 Decentralized Control System 
 
 A large-scale system that can be controlled by several small-scale systems located either 

nearby or far away is known as a decentralized control system. The method of partitioning the 

full-scale system for the purpose of designing a control for it is known as decentralization. In the 

decentralized system, each subsystem plays an important role in controlling the full-scale system. 

The basic idea here is to design a local controller that accompanies each individual subsystem. 

This local controller is concerned only with the output of the local subsystem, not the output 

related to other subsystems. In turn, this results in fewer storage requirements and simpler 

computational procedures. Figure 1 shows a block diagram of a decentralized system with n 

individual subsystems. 
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Figure 1: Decentralized system having n subsystems. 

 The marked characteristic of a decentralized system is that individual subsystems or their 

local controllers do not intercommunicate. In other words, the control of a given subsystem is 

dependent only on the external input and output of that system itself, and is independent of 

inputs and outputs from other subsystems. In the decentralized system shown in Figure 1, there 

are n controllers, namely C1, C2…Cn, u1. The inputs are u2,…un, the outputs for the large-scale 

system are y1, y2,…yn, and the reference inputs to the controllers are R1, R2,…Rn. The control u1 

from controller C1 is determined based on y1 and R1. Similarly, the control u2 is determined 

depending on y2 and R2. In general, the design of all these controllers, C1, C2……, Cn, can be 

considered as independent output feedback-control problems of subsystems that have smaller 

orders than that of the full system. Hence, this procedure concentrates on dividing a full-scale 

system into subsystems, designing a controller for each subsystem, and implementing it on a full-

scale system. Each subsystem control can be implemented on a full-scale system, once the gains 

of each local controller are determined. Let K1, K2,..., Kn be the gains of the local controllers. 
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Then the controller for a full-scale system is given as a block diagonal matrix with individual 

gain matrices as diagonal elements. The controller of decentralized system, K, is given as 

K =      K1                        0 

                                                                            K2 

 

                                                                     0                           Kn 

In this way, the control of a large-scale system is obtained using reduced calculations. Also, the 

cost of control will be less, as can be seen from matrix K, where only diagonal elements and all 

off-diagonal elements are zero. Thus, a decentralized control structure has been constructed. 

2.3 Singular Perturbation Method 

2.3.1 Introduction 

 In the singular perturbation method, a reduced-order model of a full-order system is used 

to design the controller of the system. This reduced-order model is obtained from a singularly 

perturbed model in which the separation of time scales is clearly distinct. In other words, a 

singularly perturbed model is one in which the responses of transient vectors have been clearly 

divided into slow-response transients and fast-response transients. Slow-response transients are 

those states having dominant poles, i.e., poles closer to the imaginary axis. Fast-response 

transients are those states having weak poles, i.e., poles farther from the imaginary axis. To 

obtain a simplified or reduced-order model, we consider only the state vectors having dominant 

behavior and thus neglect fast-response state vectors. The mathematical calculations to obtain a 

reduced-order model and further computations are provided in the following subsections. 
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2.3.2 Reduced-Order Model of a System 

 A reduced-order model can be obtained from a full-scale model only if the system has 

both quasi-steady states having slow-response vectors and some states having fast-response 

vectors. Let us consider a model in state variable form [3]: 

                                             ẋ = f ( x, z, ε, t )      x(to) = x0, x є Rn                                             (2.1)                                                               

                                              ε ż = g ( x, z, ε, t)     z(to) = z0, z є Rm                                          (2.2) 

where x and z are state vectors, t is time, and ε is a singular perturbation parameter. In this 

system, there is a clear distinction of states, since some states have their derivatives multiplied by 

a small parameter ε, which takes only small positive values. Now the reduced-order system in the 

new time scale should be obtained. Let T be the new time scale variable. For the above system, 

ε dz/dt = dz/dT       and dT/dt = 1/ε 

 Now the scalar ε becomes the parameter of a singular perturbation. Setting ε = 0 gives the 

reduced-order model. As ε = 0, then ε ż = 0. Then the differential equation (2.2) is transformed 

into an algebraic equation g (x, z, ε, t) = 0. Now it is necessary to find the root of this equation 

for z and substitute it back into equation (2.1). This process eliminates z and ε from equation 

(2.1), thus resulting in the system equation as  

                                                      ẋˈ = fˈ (xˈ, t)          xˈ(to) = x0                                                (2.3) 

where xˈ is the state vector of the reduced-order model. 

 Equation (2.3) represents a reduced-order model of order n, whereas the full-order system 

is of order (n + m). This reduced-order model is used for designing the controller, which is 

described in later subsections of this chapter.  
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2.3.3 State Feedback Control 

  If control to the system is provided by accessing a few of the states, then multiplying 

them with feedback gain K1 and giving –ve feedback is known as state feedback control, which 

is shown in Figure 2. Consider that K1 is the feedback gain for the system shown here. Then the 

state feedback control is given by uˈ = - K1 xˈ. With the controller included, the system equation 

for the closed-loop system can be written as ẋˈ = As xˈ. Then the system matrix As is given as As 

= Aˈ - Bˈ K1. The characteristic equation of the system will be given as Δa = det(s Inxn - As) = 0. 

Let Δd = 0 be the desired characteristic equation. To obtain K1, the condition is Δa =  Δd = 0. 

Thus, by solving the given condition, K1, the state feedback gain of the controller, is obtained. 

        External input r = 0             uˈ                                                                            yˈ  

                          -ve       

                                                                                                                   xˈ 

 

Figure 2: State feedback control                                                  

2.3.4 Output Feedback Control 

 If the feedback of the system is given as feedback after multiplying with the output 

feedback gain of the controller, then it is considered an output feedback system. Let K2 be the 

gain for the output feedback controller of that system that is shown in Figure 3. The output 

feedback control is given by uˈ = K2 yˈ. In order to obtain a closed-loop system equation, 

substitute the output control equation in the open-loop system equations as follows: 

yˈ = Cˈ xˈ + Dˈ K2  yˈ 

yˈ = (I - Dˈ  K2)-1 Cˈ xˈ 

  ẋˈ = Aˈ xˈ + Bˈ uˈ       

  yˈ = Cˈ xˈ + Dˈ uˈ                                                

K1 
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uˈ =  K2  ( I - Dˈ  K2)-1 Cˈ xˈ 

                                       ẋˈ = ( Aˈ + Bˈ  K2  ( I - Dˈ  K2)-1 Cˈ ) xˈ                                              (2.4) 

 Then the system matrix Ao is Ao = ( Aˈ + Bˈ K2 ( I - Dˈ K2 )-1 Cˈ ).                                

The characteristic equation of the system is given as Δa = det(s Inxn – Ao) = 0. Let Δd = 0 be the 

desired characteristic equation. To obtain K2 the condition is Δa =  Δd = 0. Thus by evaluating the 

given condition, K2, the output feedback gain of controller is obtained. 

            External input r = 0           uˈ                                                                         yˈ 

                               +ve 

                                                                                                                           yˈ 

 

Figure 3: Output feedback control      

2.3.5 Implementation to Full-Order Model 

 In the above two subsystems, an outline to the design controller was presented for the 

reduced-order model of order n. However, the main goal here is to design a controller for a full-

order system of order (n + m). Hence, the obtained controller needs to be implemented on a full-

order model. Depending on the order of matrices A, B, C, and D of the full-order model, the 

order of the gain matrix K of the controller was calculated. For example, if A is of order 4 x 4 

and B is of order 4 x 2, then a controller for state feedback needs to be designed. So the order of 

the controller for the full-order system needs to be of order 2 x 4. Consider that out of the four 

state vectors of the system, two states have fast transients and two states have slow transients. 

Then the reduced-order model is order 2 x 2, and the resulting controller has a gain matrix K1 of 

order 2 x 2. In this case, matrix K1 is implemented to a 2 x 4 matrix by padding a sufficient 

number of zeroes. 

  ẋˈ = Aˈ xˈ + Bˈ uˈ       

  yˈ = Cˈ xˈ + Dˈ uˈ                                                

K2 
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K1 =     K11    K12                      K =       K1    0    0 

                                                  K21    K22                                    K2    0    0     

K =       K11    K12    0     0 

                                                                      K21     K22    0     0  

            Thus, the resultant controller for the full-order system is obtained. In general, if Kr, the 

feedback gains matrix obtained for the reduced-order model, is of order mxm and needs to be 

implemented to a full-order system having controller matrix K of order nxn, where n>m, then K 

is given as 

                                                         K =     Kr    0                    0 

                                                                     0                                                                             (2.5)                                            

 

                                                                      0                          0 

2.4 Decentralized Singularly Perturbed Model 

 A decentralized singularly perturbed model is a decentralized system with a number of 

interconnected individual subsystems represented by a separation of state vectors in time scales. 

For this system, a few subsystems have dominant poles, and a few subsystems have weak poles. 

Figure 4 shows the pictorial representation of one such system. 

            From Figure 4, it was assumed that subsystems S1, S2, and S3 have slow-response 

transients, and subsystems S4 and S5 have fast-response transients. In order to obtain a reduced-

order model, it was necessary to apply a singular perturbation on this decentralized system. The 

reduced-order model is an approximation of slow-order subsystems S1, S2, and S3. The controller 

for this reduced-order model was designed using a decentralized control and then implemented 

to a full-order model. The obtained controller was substituted back into the system equations of 
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an open-loop full-order system in order to obtain the closed-loop system equations. With the 

closed-loop systems equations, the performance of the system was analyzed. Although this 

performance was not as good as the one obtained from decentralized control on a full-order 

system, the computational costs and controller implementation costs were reduced considerably, 

but with a price of losing some accuracy. 

 

                                  U                                                                               Y 

                                                 + ve                        

                                                              

                              Input            +ve                                                              Output 

                                                  + ve  

 

                                                  + ve 

                                                           

                                                  + ve 

Figure 4: Decentralized singularly perturbed system 
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CHAPTER 3 
 

DECENTRALIZED CONTROL FOR FULL-ORDER SYSTEM 
 
 

3.1 Introduction 
 
 In the process of designing a controller for a decentralized structure, three problems 

arose. The first problem was decentralized stabilization. This means that after designing a 

feedback control, all poles of the closed-loop system must be in the left half plane, i.e., stable. 

The other problems that arose were decentralized robust control and stochastic decentralized 

control. A system was considered as having robust control, if the control resulted in asymptotic 

stability and provided regulation, even under perturbed conditions of the plant. The concept 

behind stochastic decentralized control is that each sensor connected to each local controller 

shares some information with other controllers. In this chapter, design of the control that gives 

decentralized stabilization is considered. Also, the conditions under which the stabilization of the 

system with the designed decentralized control was possible are presented. The stabilization of 

the system was achieved via multilevel control in the following sections. It was also possible to 

achieve stabilization via dynamic compensation, which is an earlier concept. 

3.2 Design of Controller 

 The stabilization of a decentralized control system that uses local and global controllers is 

explained in this section. An algorithm that explains the stabilization procedure is provided at the 

end of the section. First, consider a large-scale linear system G(s), which is described by the state 

equations (3.1) and (3.2). 

                                                           Ẋ (t) = A X(t) + B U(t)                                                    (3.1) 

                                                                    Y(t) = C X(t)                                                           (3.2) 
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 This system is decentralized with n linear time invariant subsystems, described by state 

equations (3.3) and (3.4).  

                                               Ẋi(t) = Ai Xi(t) + Bi Ui(t) +    𝑛
𝑟=1,𝑟≠𝑖  (AirXr(t))                          (3.3) 

                                                                    Yi(t) = Ci Xi(t)                                                         (3.4) 

where realization for Gi(s) of each individual subsystem is given as 

                                                            Ẋi(t) = Ai Xi(t) + Bi Ui(t)                                                (3.5) 

                                                                     Yi(t) = Ci Xi(t)                                                       (3.6) 

            The term   𝑛
𝑟=1,𝑟≠𝑖 (AirXr(t)) denotes the interrelationship of the subsystems. The main 

goal was to design a state feedback controller for the decentralized system. It was assumed that 

the matrices Ai, Bi, Ci, Air, and vectors Xi, Ui, and Yi had appropriate dimensions. The pairs (Ai, 

Bi) of each subsystem were assumed to be controllable for required pole placement. As required 

to design a multilevel decentralized control, the control of ith subsystem Ui(t) is  

                                                                Ui(t) = Uil(t) +Uig(t)                                                    (3.7) 

where Uil is the local control and Uig is the global control as follows:  

                                                     Uil(t) = -   𝑛
𝑟=1,𝑟≠𝑖  (Kii Xi(t))                                                 (3.8) 

                                                      Uig(t) = -   𝑛
𝑟=1,𝑟≠𝑖  (Kir Xr(t))                                              (3.9)                       

           Substituting the controls given by equations (3.8) and (3.9) into equation (3.3), the closed-

loop system for the ith subsystem is obtained with the state equation (3.10):  

                                Ẋi(t) = ( Ai-Bi Ki ) Xi(t) +   𝑛
𝑟=1,𝑟≠𝑖 ( ( Air-Bi Kir ) Xr(t))                         (3.10) 

           The complete system state vectors are given as Ẋ(t) = [  Ẋ1(t)T  Ẋ2(t)T………. Ẋn(t)T ]T. 

Since the pair (Ai, Bi) is controllable for all subsystems, it is always possible to find feedback 

gain Ki such hat a set of eigenvalues is assigned to the closed-loop system (Ai-Bi Ki). To stabilize 

the large-scale system, initially the subsystem needed to be stabilized. The individual stability 
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properties of each subsystem were then aggregated into a single scalar Lyapunov function, and 

stabilization of large-scale system was attained. Illustrated below is the algorithm that explains 

the procedure to stabilize the system based on multilevel control [2]: 

 STEP 1: 

 The system given in equation (3.1) should be in canonical form, which assures that the 

pair (A,B) is controllable, which leads to the system given in equation (3.3) being in canonical 

form, such that pair (Ai, Bi) is controllable for all subsystems. This form is otherwise known as 

the input decentralized form. If the system is not in required form, a canonical transformation is 

applied to obtain the system in a canonical representation. In this case, assume that the systems 

given in both equations (3.1) and (3.3) are in canonical forms. 

 STEP 2: 

 In this step, the feedback gains, Ki, for each subsystem must be found. As for the ith 

subsystem, the pair (Ai, Bi) is controllable, and the resulting closed-loop system equation 

including controller is 

                                                     Ẋi(t) = ( Ai – Bi Ki ) Xi(t)                                                    (3.11) 

 The characteristic equation of the system obtained is given as det ( s I – Aci ) = 0, where 

Aci = ( Ai – Bi Ki ). Comparing this equation with the characteristic equation of the subsystem 

with desired pole placement, the feedback gain Ki can be solved. Similarly, feedback gains Ki for 

i = 1, 2…….,n are calculated for all subsystems. 

 STEP 3:  

 The aggregation of subsystems to obtain a large-scale interconnected system depends on 

the aptness of choosing a Lyapunov function, in order for that transformation is to be applied to 
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decoupled closed-loop subsystems. Let Mi be the transformation matrix, and let Λi be the block 

diagonal matrix having poles of the system as block diagonal elements given as 

            Λi   = Block diag      −𝜆𝑖1     wi1      -𝜆𝑖𝑗        wij          −𝜆𝑖(𝑗+1) ,………. −𝜆𝑖(𝑛𝑖−𝑗 )    

                                             -wi1   −𝜆𝑖1      -wij     −𝜆𝑖𝑗     

 Let the required locations where poles need to be placed for the ith system be 

 (−𝜆i1±wi1j, −𝜆i2±wi2j,……., −𝜆ij±wijj, −𝜆𝑖(𝑗+1) ,………. −𝜆𝑖(𝑛𝑖−𝑗 )), and let the eigenvectors of 

the closed-loop matrix be Aci be Ei1, Ei2,…..Ein. Then the modal matrix Mi will be 

                                      Mi = [ Re(Ei1) | Im(Ei1) | ……. Re(Ein) | Im(Ein)]                               (3.12) 

 Once the transformation matrix is obtained, the transformed matrices Biˈ and Airˈ are 

calculated with equation (3.13): 

                                            Biˈ = Mi
-1  Bi and  Airˈ =   Mi

-1  Air  Mr                                         (3.13) 

 STEP 4:             

 In step 3, the local feedback gains, Ki, of each local subsystem have been calculated. 

Now it is necessary to evaluate the feedback gains of the interconnected systems. Once both the 

local feedback gains, Ki, and interconnection gains, Kir, are obtained, the system state equations 

of the overall decentralized system are deduced. The interconnection gains are obtained from 

equation (3.14), assuming that (BiˈT  Biˈ) is always invertible. 

                                                Kirˈ = [ (BiˈT  Biˈ)-1  BiˈT  Airˈ ]T                                               (3.14) 

 Since the values of Biˈ and Airˈ can be obtained from equation (3.13), substituting those 

values into equation (3.14) allows the Kirˈ values to be determined. The decentralized large-scale 

system is obtained by substituting these feedback gains into the transformed state equation given 

by 

                             Ẋiˈ(t) = Aiˈ Xiˈ(t) +    𝑛
𝑟=1,𝑟≠𝑖  ( Airˈ - Biˈ  Kirˈ ) Xrˈ(t)                                (3.15) 
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 Hence, the overall system ends up with the following state equation for each ith 

subsystem: 

                         Ẋiˈ(t) = Λi Xiˈ(t)+[Ii - Biˈ( BiˈT  Biˈ)-1  BiˈT]    𝑛
𝑟=1,𝑟≠𝑖 (AirˈXr(t))                    (3.16)  

 STEP 5:  

 Although a decentralized control was designed, it cannot be assured that the resulting 

system is stable. Hence, the stability of the whole system must be checked. For the  ith 

subsystem, consider a parameter 𝛼𝑖  = min (𝜆 ip) for all possible values of p. The Lyapunov 

function for the ith subsystem, Vi, is used in such a way that it satisfies the condition  

                         Vi (Xiˈ) = (XiˈT  Piˈ  Xiˈ )1/2 , where PiˈΛi  + Λi
T Piˈ + Hiˈ = 0                          (3.17) 

where Piˈ = 𝛽𝑖   Ii ,  Hiˈ = 2  𝛽𝑖  (𝜆𝑖1, 𝜆𝑖2, ….… 𝜆𝑖(𝑗+1), …….… 𝜆𝑖(𝑛𝑖−𝑗 )), and 𝛽 is an arbitrary 

positive constant. Hence, for the entire system, the aggregate Lyapunov function will be V = (V1, 

V2, V3………Vn)T. The stability condition can be derived by using the vector version of 

comparison principle, and then the Sevastyanov-Koteliansky condition can be applied to it. If the 

condition fails to be satisfied, it means that the Lyapunov function is not appropriate. 

 STEP 6:  

  If the choice of the Lyapunov function is appropriate, then the overall system turns out to 

be stable, whereas if the Lyapunov function does not satisfy stability condition, then the value of 

𝛼𝑖  needs to be reconsidered. The value of 𝛼𝑖 , given by the equation provided in step 5, takes the 

minimum of all real parts of the eigenvalues of the subsystem. Since it did not work out properly, 

the minimum real value can be excluded, and the next minimum value can be taken as 𝛼𝑖  of the 

real parts of all eigenvalues. Having the new 𝛼𝑖ˈ value, the stability conditions are verified. This 

process is repeated for larger values of 𝛼𝑖  until stabilization is achieved. 
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3.3 Implementation and Performance Analysis 

 Once the local feedback gains of each individual subsystem are obtained, it is necessary 

to implement the local controllers to the full-scale system. For a decentralized system, the 

controller of the overall system is given by a block diagonal matrix, as discussed in Chapter 2. 

For the model represented by equations (3.1) and (3.2), let K be the decentralized controller for 

the overall system. From section 3.2, the local controller gains of each subsystems are obtained 

as K1, K2, ……,Kn. Now the controller K is given as 

K  =    K1                  0 

                                                                                 K2 

 
                                                                         0                   Kn 

            Once the state feedback controller is obtained, performance analysis can be done on the 

overall system. The closed-loop subsystem of the large-scale system is given as 

                                                          Ẋˈ(t) = (A - B K) Xˈ (t)                                                  (3.18) 

 To obtain the pole placement of closed-loop system, it is necessary to solve the 

characteristic equation given as det(s I – (A-B K)) = 0. The roots obtained are the resultant pole 

placements of the system, including the controller. Comparing this pole placement with the 

desired pole placement, it can be verified whether or not the controller served the purpose of pole 

placement while stabilizing the entire system at the same time. 

3.4       Numerical example 

  The following example [2] illustrates the scheme of decentralized control, which also 

stabilizes the entire system. A fifth-order interconnected system has state equation (3.19). Since 

the control used in the design is the only state feedback control, the matrix C can be anything and 

does not affect the controller K. 
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                                         Ẋ =   0     1     1     1     1        X  +    0      0     U                             (3.19) 

                                                   0     0     0    0.1    1                   0      0 

                                                   4     -1    2     0     0.5                 1      0 

                                                   0.4  0.2   0     0      1                  0      0 

                                                   0.5  0.2   1     -1     2                  0      1 

 Since the eigenvalues of this system are (3.5, 0.47 ±  j1.56, -0.21 ±  j0.6), the system is 

not stable. By using the algorithm mentioned in section 3.2, it can be stabilized. The large-scale 

system given in equation (3.19) is an interconnected system of two subsystems, one of order 3 

and another of order 2. System equations of the individual subsystems are as follows: 

                   

                          Ẋ1   =    0    1     0    X1    +       1       1       X2   +     0       0     U1                  (3.20) 

                                        0     0     1                   0.1     1                     0       0 

                                        4    -1     2                   0      0.5                    1       0 

                          Ẋ2   =    0.4     0.2     0    X1  +         0     1    X2   +   0    0     U2                     (3.21) 

                                        0.5     0.2      1                   -1     2                0     1 

where U1 + U2 are the local controls. The desired pole placement for the subsystem shown by 

equation (3.20) is (-10, -5 ± j2), and the desired pole placement for the subsystem shown by 

equation (3.23) is (-2±j1). By solving for local feedback gains using state feedback control laws, 

the obtained feedback gains are K1 = (294 128 22) and K2 = (4 6), for the desired pole 

placements of the two subsystems. The eigenvectors are obtained as Ev1 and Ev2, and the 

transformation matrices M1 and M2 are obtained by using equation (3.12). 
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                            Ev1 =      0.0245+j0.0234        -0.00990        Ev2  =   -0.4+j0.2             

                                           -0.1694-j0.0678         0.0995                          -1 

                                               -0.9826                    -0.995 

                       M1 =    0.0245    0.0234   -0.0099                   M2 =    -0.3651    0.1826 

                                   -0.1694   -0.0678    0.0995                                0.9129         0 

                                    0.9826         0   -0.9950 

            Once the transformation matrices of each subsystem are obtained, the transformed 

matrices B1ˈ, A12ˈ, B2ˈ, and A21ˈ need to be found by equations (3.22) and (3.23): 

                                           B1ˈ = M1
-1 B1 and A12ˈ =  M1

-1 A12 M2                                          (3.22) 

                                           B2ˈ = M2
-1 B2 and A21ˈ =  M2

-1 A21 M1                                          (3.23) 

 Substituting the appropriate values in equations (3.22) and (3.23), the transformed 

matrices are obtained, and by putting those matrices in the transformed state equations, the state 

equations of the interconnected subsystems can be obtained. The system is not yet complete 

since the global controls Uigˈ have been found. Using equation (3.14), K12 and K21 can be 

determined. Since the transformed matrices are already determined, plugging those values into 

equation (3.14) gives K12ˈ = [31.2141     6.9872] and K21ˈ= [0.9129   -0.0103   -0.9482]. Using 

both local and global controls, the overall system is obtained from equation (3.16). Hence the 

decentralized control system in transformed coordinates will be given as 

                     Ẋ1ˈ       =          -5.0000    2.0000    0.0000   -9.8594   -1.8118             X1ˈ 

                     Ẋ2ˈ                   -2.0000   -5.0000   -0.0000   42.8077   11.9436            X2ˈ 

                                             -0.0000   -0.0000   -10.0000   21.1757    5.2331 

                                               0.0527    0.0092   -0.0349   -2.0000   -1.0000 

                                              -0.0264   -0.0046    0.0174    1.0000   -2.0000 
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            To obtain a system with the controller in its original coordinates, the equations needed 

are as follows: 

A12 = M1 A12ˈ M2
-1,         A21 = M2 A21ˈ M1

-1,          B1 = M1 B1ˈ,         B2 = M2 B2ˈ 

 To do the performance analysis, the poles of the obtained closed-loop system need to be 

compared to those of the desired pole placement. Poles of the closed-loop system with a 

controller are (-5.0614 ± j2.2034, -1.9739 ±  j0.8584, -9.9296), which are pretty close to the 

desired pole placement at (-5 ± j2, -2 ± j1, -10). 

 The example discussed can be solved by hand because of the small order of the 

interconnected system. If the system is of a much higher order, then the calculations turn out to 

be difficult. Hence, a MATLAB program can be developed and used to design the decentralized 

control. The MATLAB code for the example discussed has been provided in Appendix A. 

3.5 Summary 

 A large-scale interconnected system was considered and represented in decentralized 

form, which is also known as canonical form. For state feedback control, local and global 

controls were designed and implemented on the full-scale system. The control was designed in 

such a way that the stabilization was attained even in multilevel control. Once the large-scale 

decentralized control was designed, the pole placement of a closed-loop system was found and 

then compared with the desired pole placement. Thus, the performance of the designed 

decentralized control was analyzed. A MATLAB program was used to design the control as an 

example. This program helps in solving control-design problems for higher-order systems. 
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CHAPTER 4 
 

CONTROLLER DESIGN USING SINGULAR PERTURBATION TECHINIQUE 
 
 

4.1 Introduction 
 
 This chapter discusses the design of a controller for a system using the singular 

perturbation technique. The main purpose of this method was to obtain some approximation at 

the cost of some accuracy loss. But it is beneficial because of the decrease in the cost of 

computational procedures and also the reduced cost of controller implementation. The cost of the 

controller was reduced because in this method, the control was designed for only a few states 

rather than each and every state. The following sections explain how the time-scale separation 

among states gives way to the reduced-order model. Also presented are the steps used to obtain a 

reduced-order model. Once the reduced-order model is in place, two kinds of control can be 

designed: state feedback and output feedback. The controller was implemented to a full-order 

model to check for efficiencies of both types of control. The performance of both control systems 

was analyzed and compared. Based on intuition, it seems that state feedback control should 

prove to be more accurate since output feedback uses the entire output as feedback and does not 

have access to individual internal states. In state feedback control, the feedback is taken from 

required internal states, and therefore, the system will have more accurate pole placement as 

required. Hence, when the controller design of a numerical example is considered, it can be 

observed whether or not state feedback gives better performance than output feedback. The 

performance of a designed controller in this method mainly depends on the value of ε, which is 

the singular perturbation parameter. 
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4.2 Slow- and Fast-State Transients 

 Most full-order systems in practical scenarios have both slow and fast transients. 

However, the system representation may not be in a standard form that differentiates time scales. 

If the system is represented in a non-standard form where dividing the slow and fast transients is 

difficult, it is necessary to perform some existing operations [3] to convert it into standard form. 

Once the system is in standard form, the eigenvalues of the given system matrix must be 

determined. Those eigenvalues located nearest the imaginary axis are considered the dominant 

poles. Transient vectors associated with dominant poles have smaller values because the 

dominant poles take longer to reach the origin. Those eigenvalues located farthest from the 

imaginary axis are weak poles, having very high values for their transient vectors. This is 

because the transient vectors are inversely proportional to the distance of the poles from the 

imaginary axis. Hence, the fast transient states die sooner than the slow transient states. The state 

vectors, thus divided into slow- and fast-response state vectors, are shown differently in 

representation by multiplying the fast-response transients with a very small parameter ε. When 

the very fast transient state is multiplied by a very small positive scalar ε, the result would be a 

finite value. Based on these states, a reduced-order model was obtained, as explained in the 

following sections. 

4.3 Reduced-Order Model 

 A reduced-order model was obtained by approximation of the slow transient state 

vectors, which are also known as quasi-steady state vectors. Below are the steps to obtain a 

reduced-order model from a singular perturbation model. A model representation of a system is 

given as 

                                                               Ẋ = A X + B U                                                            (4.1) 
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                                                               Y = C X + D U                                                            (4.2) 

This model in explicit state variable form is presented as  

                                                        ẋ = A11 x + A12 z + B1 u1                                                    (4.3) 

                                                       ε ż = A21 x + A22 z + B2 u2                                                   (4.4) 

                                                             y = C1 x + C2 z + D u                                                     (4.5) 

where x and z are state vectors, u is a control vector, x є Rn, and z ɛ Rm. The symbol ε denotes a 

small parameter that can be neglected. In the above model, the state vector ẋ has dominant 

behavior, being a slow-response transient, and ɛ ż has a weak effect on the system since it is a 

fast-response transient. When ε = 0, the order reduction is known as singular perturbation. Thus, 

differential equation (4.4) is transformed into algebraic equation (4.6) as 

                                                           0 = A21 x + A22 z + B2 u2                                                                 (4.6)                                           

            The root of equation (4.6) is z = - A22
-1 (A21 x + B2) and when substituted back into 

equations (4.3) and (4.5) yields reduced-order model equations (4.7) and (4.8) as 

                                ẋˈ = (A11 – A12 A22
-1 A21) xˈ + (B1 – A12 A22

-1 B2) uˈ                                 (4.7) 

                                   yˈ = (C1 – C2 A22
-1 A21) xˈ + (D – C2 A22

-1 B2) uˈ                                    (4.8)         

Thus, the order of the reduced-order system will be n, whereas the order of the full-order system 

will be (n + m). 

4.4 Controller Design 

4.4.1 State Feedback 

 Consider the reduced-order model, as shown in Figure 5, obtained from the previous 

section having system equations (4.7) and (4.8). Let the system matrices be Ga, Gb, Gc, and Gd, 

given as 

Ga = (A11 – A12 A22
-1 A21) 
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Gb = (B1 – A12 A22
-1 B2) 

Gc = (C1 – C2 A22
-1 A21) 

Gd = (D – C2 A22
-1 B2) 

                         r = 0               Uˈ                                                    Yˈ 

                                  -ve                                             Xˈ 

 

Figure 5: Reduced-order state feedback control 

 Hence, the reduced-order system is given by 

                                                       Ẋˈ = Ga Xˈ + Gb Uˈ                                                             (4.9) 

                                                        Yˈ = Gc Xˈ + Gd Uˈ                                                          (4.10) 

where the order of the reduced-order model is n, and the desired pole placement is at locations 

(𝜆1, 𝜆2,..... 𝜆n).  Since this system has state feedback, the feedback control is given by Uˈ = -K1 

Xˈ. Substituting this control law in equations (4.9) and (4.10) gives the closed-loop system as  

                                                      Ẋˈ =  (Ga – Gb K1) Xˈ                                                        (4.11) 

 Hence, the system matrix is As = (Ga – Gb K1), and the characteristic equation of the 

system is given by det(s Inxn – As) = 0. The eigenvalue matrix 𝜆 is given as 𝜆 = diagonal matrix 

(𝜆1  𝜆2 ,……..  𝜆n). The characteristic equation of the system with desired pole placement will be 

det( s Inxn – 𝜆 ) = 0. By comparing the two characteristic equations in hand, the value of state 

feedback gain can be calculated. Thus, the state feedback control given by the control law          

Uˈ = -K1 Xˈ is achieved. 

4.4.2 Output Feedback 

 Here there will be output feedback given to the system with no external input to the plant. 

The output feedback law is given by Uˈ = K2 Yˈ. The system matrices Ga, Gb, Gc, and Gd are 

Ga, Gb, Gc, Gd 

K1 
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those of the reduced-order model, as shown in Figure 6, given by equations (4.7) and (4.8). 

Substituting the output control law in state and output equations of the reduced-order model, the 

following equations are obtained: 

Yˈ = Gc Xˈ + Gd K2 Yˈ 

Yˈ = (1- Gd K2)-1 Gc Xˈ 

Uˈ = K2 (1- Gd K2)-1 Gc Xˈ 

                                          Ẋˈ = (Ga + Gb  K2 (1- Gd K2)-1 Gc ) Xˈ                                           (4.12) 

 

                          r = 0                   Uˈ                                          Yˈ 

                                   +ve                                                                  Yˈ 

                                           
Figure 6: Reduced order output feedback control 

 The system matrix Ao is given by Ao= ( Ga + Gb  K2 ( 1- Gd K2)-1 Gc ). The characteristic 

equation of the closed-loop system is det( s Inxn – Ao)=0. This equation needs to be compared 

with the characteristic equation of the system with desired pole placement. The characteristic 

equation of the desired system was presented in the previous section as det (s I - 𝜆) = 0. 

Comparing these two characteristic equations numerically by hand is not simple. Hence, a 

MATLAB code was used to solve the feedback gain, K2. By knowing the feedback gain, K2, the 

output feedback control can be provided to the system. 

4.5 Implementation to Full-Order Model 

 The designed control, either state feedback controller or output feedback controller, will 

be on a smaller order than the controller designed for the full-order system. To obtain the 

performance of the system with the controller designed using a singular perturbation technique, 

Ga, Gb, Gc, Gd 

K2 
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first it is necessary to obtain the full-order controller from it. From the full-system controller, the 

closed-loop system of a large-scale system can be represented. If the controller of the full-order 

system K is of order lx(n + m) and the controller for the reduced-order model (either K1 or K2) is 

only of order pxn, then it is necessary to implement it as a full-order system by padding a 

sufficient number of zeroes to obtain the K matrix with l row and (n + m) columns. The designed 

controller (K1 or K2) is then placed as the first-block element. Let Ks and Ko be the full-order 

controllers for the state feedback system and output feedback system, respectively, given as 

                         Ks =    K1                0                         Ko =      K2             0                              (4.13) 

                                     0                 0(lx(n+m))                            0                0(lx(n+m))    

4.6 Comparison between State Feedback Control and Output Feedback Control 

 Previously in this chapter, two feedback controls for the same desired pole placement 

were designed. To compare their performances, it is necessary to verify the proximity of the 

closed-loop system poles to that of desired pole placement. For state feedback control, the 

closed-loop system was given as Ẋ = (A-B Ks) X. Hence, the system matrix is (A-B Ks), and 

eigenvalues of this matrix provided the poles of the closed-loop system. Similarly, for the output 

feedback control system, the closed-loop system was Ẋ = (A+B Ko (I-D Ko)-1 C) X. Since the 

system matrix was (A+B Ko (I-D Ko)-1 C), its eigenvalues provided the poles of the closed-loop 

system. These two sets of poles for the state and output feedback control systems were evaluated 

with the poles desired to be placed. The error in two cases was calculated and analyzed. Of these 

two controls, it is obvious that state feedback control provided better performance, since the 

individual states can be accessed and given as feedback according to requirements. Output 

control provided less accuracy in performance, in comparison, and this is illustrated with an 

example in the next section. 
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4.7 Numerical Example 

 In order to explain the process of designing a controller using the singular perturbation 

technique, the following example [3] is used. A system having both slow and fast state transients 

is represented by state equations (4.14) and (4.15): 

 

                          Ẋ   =    -0.2000    0.2000         0          0            X   +      0       U                   (4.14) 

                         ε Ż          0           -0.5000    0.5000       0           Z            0 

                                        0                 0           0       1.0000                       0 

                                        0                 0    -1.0000   -2.0000                       0 

                                                    Y = [ 1   0   0    0 ]    X                                                         (4.15) 

                                                                                      Z 

where X є R2 and Z ɛ R2 are the slow- and fast-response states, respectively, thus dividing the 

full-order system into two subsystems. The individual subsystems are given by equations (4.16), 

(4.17) and (4.18):  

                        Ẋ   =    -0.2000    0.2000      X  +    0          0      Z           +      0       U1          (4.16) 

                                      0            -0.5000                0.5        0                           0 

                        ε Ż   =      0            0        X   +      0       1.0000     Z   +       0      U2               (4.17) 

                                        0             0                   -1.0    -2.0000                    0 

                                                 Y  =  [  1  0  ]  X   +   [  0   0  ]  Z                                            (4.18) 

 Setting ε = 0 in equation (4.17) and then substituting the root for Z from equation (4.17) 

back into equations (4.16) and (4.18), the reduced-order model was obtained. Thus, the obtained 

system matrices of the reduced-order model are given as  
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Ga  =   -0.2       0.2               Gb  =    0           Gc  =   [  1     0]      Gd  =  0 

                                   0        -0.5                           0.5 

 Let the desired pole placement be at the locations (-0.3, -0.4). For state feedback control, 

let K1 be the feedback gain of the control system. Using the MATLAB command ―place,‖ the 

gain K1 is found using Ga and Gb. The obtained feedback gain is K1 = [0.2   0]. This is 

implemented in the full-order model control Kp1 by padding zeroes. Hence, Kp1 is given as Kp1  =       

[0.2   0    0    0]. The same system has been used to design a controller with two different ε 

values to see how the accuracy of the reduced-order model design depends on the parameter of 

singular perturbation. The poles are chosen arbitrarily for the closed-loop system. When this 

controller is used to obtain a closed-loop system in two cases—one having ε = 0.1 and the other 

having ε = 0.01—the following are the pole placements of closed-loop system: 

 For ε = 0.1: 

 Pole placement from full-order controller design is [-10.1  -10  -0.3  -0.4] 

 Pole placement from reduced-order model design is [-10.0022 ± 0.1465i, -0.3157, -0.38]   

 For ε = 0.01: 

 Pole placement from full-order controller design is [-101  -100  -0.3  -0.4] 

 Pole placement from reduced-order model design is [-100.0±0.1400i, -0.30, -0.40]  

 For output feedback control, let K2 be the gain of reduced-order output feedback control. 

Using the MATLAB program provided in Appendix 3, the gain K2 is found using Ga, Gb, Gc, and 

Gd as K = [0   -0.88]. This can be implemented in the full-order system by padding zeroes. The 

controller Kp2 of the full-order system for output feedback is obtained as Kp2 = [0   -0.88   0    0]. 

This system has been checked for controller design using two different values of ε: 0.1 and 0.01. 
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The pole placements obtained for the closed-loop system, when considering different values for 

ε, are as follows: 

 For ε = 0.1: 

 Pole placement from full-order controller design is [-10.1  -10  -0.3  -0.4] 

 Pole placement from reduced-order model design is [-10.2224±2.0916i, -0.2, -0.05]   

 For ε = 0.01: 

 Pole placement from full-order controller design is [-101  -100  -0.3  -0.4] 

 Pole placement from reduced-order model design is [-100.22±6.63i, -0.2, -0.06]  

 For state feedback control, from the obtained results, it is observed that the design when ε 

= 0.01 gives better performance than the design when ε = 0.1. For output feedback control, from 

the resulting pole placements presented, it is once again clear that the design when ε = 0.01 gives 

performance than when ε = 0.1. Hence, from these two cases, it is evident that reduction of the ε 

value in the system gives better performances while designing the controller using a singular 

perturbation technique. On the other hand, when pole placement of the state feedback control is 

compared with that of output feedback control, the comparison showed that pole placement error 

for output feedback is large when compared to that of state feedback pole placement. Hence, it is 

also proven that state feedback is more useful that output feedback. The MATLAB program 

codes to solve the controller design for a singularly perturbed system as explained in the example 

are given in Appendices B and C. Appendix B shows the program used for controller design 

using state feedback control, and Appendix C shows the program used to design a controller for 

the output feedback control system. 
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4.8 Summary 

 In this chapter, the complete designing process of a controller for full-order system was 

presented. This design mainly depends on the singular perturbation technique. A controller was 

designed for both state feedback control and output feedback control systems. The design was 

done for different values of ε, a parameter of singular perturbation, and the dependency of 

accuracy on the value of ε was verified. A comparison was also done on performances of the 

state feedback control and the output feedback control to determine which gave the desired 

performance for a system. A numerical example was given to explain the procedure in detail. A 

MATLAB program code was written for both state and output feedback controls to facilitate the 

design process. In this way, the controller of a singularly perturbed system was designed. 
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CHAPTER 5 
 

DECENTRALIZED SINGULARLY PERTURBED SYSTEM 
 
 

5.1 Introduction 
 
 Chapters 3 and 4 presented the decentralized control of a system and controller design 

using a singular perturbation technique. In both procedures, calculations were simplified and cost 

reduction was attained. To simplify further, both techniques can be combined and implemented 

on a given system. If there is a large-scale system that is decentralized and also singularly 

perturbed, both procedures can be applied. First, a reduced-order model of a large-scale system 

was obtained using singular perturbation. For the reduced-order model, a decentralized controller 

was designed. The obtained controller was implemented to a full-order model by padding zeroes. 

Since the approximation was done at two levels, this is a simpler procedure than the other two 

procedures discussed in earlier chapters. Because the approximation was performed twice, the 

system lost some information and therefore some accuracy as well. However, a lower price for 

controller installation and lower computational and storage needs were attained at the cost of this 

lost accuracy. 

5.2 Decentralized Control Design for Full-Order System 

 In this section, a decentralized singularly perturbed system is considered. A decentralized 

controller for a full-order system was designed and compared to the controller designed based on 

the reduced-order model in the later sections. Consider a decentralized singularly perturbed 

system with the following output and state equations: 

                                                                 Y(t)  =  C X(t)                                                            (5.1) 

                                      Ẋ(t)   =     A1         A2           X(t)   +       B1      U(t)                             (5.2) 

                                   ε  Ż(t)          A3         A4           Z(t)            B2 
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 This system is decentralized with (n + m) linear time invariant subsystems where the 

slow-response part of the system has n subsystems, and the fast-response part of the system has 

m subsystems. Let A =    A1         A2    and B =     B1  . To design a controller, a state feedback   

                                         A3         A4                      B2 

control was given to the system as U(t) = Kf  [  XT(t)    ZT(t)  ]T, where Kf is the state feedback 

gain. Substituting this control law into system equations, the closed-loop systems equations are 

given as  

                                  Ẋ(t)   =    A1         A2           X(t)   +        B1        Kf    X(t)      

                              ε  Ż(t)          A3         A4           Z(t)              B2                Z(t) 

                                         Ẋ(t)   =     A1         A2       +        B1     Kf       X(t)      

                                      ε  Ż(t)          A3         A4                  B2                Z(t) 

 Let ( 𝜆1, 𝜆2,….. 𝜆n…… 𝜆(n+m) ) be the poles to be placed. Using the algorithm discussed in 

section 3.2 of Chapter 3, the controller was designed. Again, this controller was a block diagonal 

matrix with a controller for each subsystem as diagonal elements. Let K1, K2,…..Kn,……K(n+m) 

be the individual controllers of all the subsystems. Then Kf is given as  

                                                K  =      K1                                 Kij  

                                                                            K2 

                                                            K(n+m)1                          K(n+m) 

where Kij is the interconnected gain for the ith and jth system. Kij can also be evaluated using the 

algorithm given in section 3.2. Using step 4 of the algorithm, the system matrix of the closed-

loop system after including the designed controller was obtained. In this way, both the 

decentralized controller of the full-order system and the system matrix Af of the closed-loop 

system were calculated. System matrix Af is given by Af = [A - B Kf]. 
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5.3 Decentralized Controller Design Based on Reduced-Order Controller 

 In this section, a reduced-order model is deduced from a full-order model and a 

decentralized controller is designed for it. For the system in equations (5.1) and (5.2), Ẋ(t) 

represents slow-state vectors, and Ż(t) represents fast-state vectors. As the system is already in a 

perturbed model, the singular perturbed technique is applied by making the parameter ε = 0, then 

the state equations are as follows, assuming that A4 is always invertible: 

                                              Ẋ(t) = A1 X(t) +  A2 Z(t) + B1 U1(t)                                             (5.3) 

0 = ε Ż(t) = A3 X(t) + A4 Z(t) + B2 U2(t) 

            Solving for Z(t) and substituting this back into equation (5.3) gives the following 

reduced-order model: 

Z(t) = -A4
-1 A3 X(t) – A4

-1 B2 U2(t) 

Ẋ(t) = A1 X(t) – A2 A4
-1 A3 X(t) + B1 U1(t) – A2 A4

-1 B2 U2(t) 

Ẋˈ(t) = ( A1 – A2 A4
-1 A3) Xˈ(t) + ( B1- A2 A4

-1 B2 ) Uˈ(t) 

 The above system is the state equation of reduced-order model having n individual states. 

Once the model is in place and since it is a decentralized system, the decentralized controller can 

be designed using the algorithm shown in section (3.2). Let Kr1, Kr2, Kr3….Krn be the local state 

feedback gains and Krij be the interconnected feedback gain for ith and jth local subsystems. All 

the gains are found using the algorithm, and then the final controller Krp is obtained as 

  Krp =   Kr1                    Kij 

                                                                              Kr2 

                                                                      Kij                    Krn 

  

This is the decentralized controller for the reduced-order system. 
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5.4 Implementation and Performance Analysis 

 The decentralized controller obtained in the previous section is the controller for only the 

Nth-ordered reduced model. To obtain the full-order decentralized controller, it is necessary to 

implement the controller Krp on the full-order model. This is achieved by padding zeroes. Let the 

decentralized controller for the full-order system be Kr. Based on the reduced-order model, 

Kr =   Krp                0 

                                                                       0                    0 

 This Kr is an appropriate order related to A and B. The closed-loop system is obtained 

from the controller by substituting the control law in equation (5.1) as  

Ẋ(t) = (A-B Kr) X(t). 

 Hence, the system matrix is Ar = (A-B Kr). From section 5.2, the system matrix Af of the 

closed-loop system with a full-order decentralized controller was used to verify the sensitivity of 

the design using the singular perturbation technique and compare the poles of the closed-loop 

system from the reduced-order model with the poles of the closed-loop system from the full-

order model. Hence, the eigenvalues of matrix Ar were compared with the eigenvalues of matrix 

Af. In that way the performance of both the systems was analyzed. 

5.5 Application to Large-scale Decentralized Power System 

 The procedure presented in the earlier sections of this chapter was needed to be applied to 

a real-time system to check the robustness and reliability of the system. Consider a power plant 

having five substations where two subsystems have slow-response state transients and three 

subsystems have fast-response state transients. The state equations of the system are given below 

[5]. In this system, vector X represents slow-response states, and vector Z represents fast-

response states. 
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Ẋ   =   -0.5    0     0.1   -0.2    0.1       X      +       1       0        U1 

εŻ         0    -1     0.1    0.3     0.2       Z                 0       1       U2 

                                        0.4   0.3    -0.5     0      0                           0.4     0 

                                      -0.4    0.4      0   -0.45   0                            0    -0.5 

                                       0.35   0.3      0      0    -0.4                         0     0.6 

 Again, the slow-order system is a decentralized system with states of two subsystems, 

and the fast-order system is a decentralized system with states of three subsystems. Now the 

decentralized controller for a full-order system is designed in following way, using the method 

discussed in section 5.2. The required pole placement for the system is (-1, -0.5, -4, -4.5, -5). To 

design a controller for the entire system, let it be divided into two main subsystems and the value 

of ε be 0.1. The first subsystem has the following matrices for system equations: 

A11 =    -0.5    0           B1  =     1     0 

                                                                0     -1                         0     1 

            The controller for this system is designed using the MATLAB command ―place,‖ and the 

obtained controller is       0.5       0 

                                         0         0.5 

 Similarly, the other subsystem has the following system matrices, and the given 

controller is obtained using MATLAB: 

A22  =     -5      0      0        B2  =     4     0      Controller  =  -1.137   0.182    0.133 

                              0    -4.5    0                      0    -5                                0        6.56        4.2 

                              0      0     -4.0                   0     6 

 Using the eigenvectors, transformation matrices M1 and M2 are found and thus the 

transformed matrices are found. Then the system matrix is obtained as  
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   A     =          -1           0            0           0           0             

                                               0          -0.5         0           0            0 

                                           -0.148    0.886       -5           0            0 

                                            0.647    -3.881       0         -4.5          0 

                                           -0.583    3.497        0           0         -4.5 

 The eigenvalues of this matrix are the obtained pole placements given by (-1, -0.5, -0.4,   

-0.45,-5). 

 Now it is necessary to obtain a reduced-order model and design a decentralized controller 

for it to achieve a simplified procedure using the method required as discussed in section 5.3. A 

MATLAB program code was used to do the calculations, which are provided in Appendix E. 

The reduced-order model thus obtained is of order 2 x 2 having Ga and Gb:   

Ga =   -0.1547    -0.0428         Gb  =    1.08    0.3722 

                                               -0.3617    -0.8233                      0.08   0.3667 

 This reduced-order system is again a decentralized system with two subsystems, each of 

order 1 x 1. Let the pole placements for the subsystems be (-1) and (-0.5). The individual 

controllers were obtained, and from these, the decentralized controller Kp of the reduced-order 

model was obtained as follows: 

K1 =   0.6996      K2  =    -0.1837      Kp  =     0.6996     -0.1837 

                                       0.2411                   -0.8417                   0.2411     -0.8417 

 The required controller for the full-order system should be of order 2 x 5, according to 

the dimensions of A and B. Hence, a 2 x 3 ordered zero matrix is padded to obtain K as 

K   =    0.6996     -0.1837     0    0     0 

                                                            0.2411      -0.8417    0    0     0  
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            Using the control law equation, Ac = A - B K, the system matrix was obtained, and the 

eigenvalues of the system matrix, which are the pole placements of the system, were found as    

(-3.7464, -4.6524, -5.0678, -0.6956±0.5170i). It can be seen from this result that the error in 

pole placement is 6.2% on average for ε = 0.1, the reduced-order model decentralized controller 

design is used. The robustness of the designed controller was verified by considering different 

values of ―ε.‖ Tables 1 and 2 show the desired pole placement, obtained pole placement, and 

error comparison for various ―ε‖ values considered. Pole placement was chosen arbitrarily.  

TABLE 1 

POLE PLACEMENTS OBTAINED FOR VARIOUS ε VALUES 

Value of 
ε 

Desired 
Pole Placement 

of System 

Obtained  
Pole Placement 
with Controller 

Error/Deviation of 
Obtained Poles  

from Desired Poles 

0.5 -0.8, -0.9, -1, -1, -0.5 -0.825, -1.057, -1.485, -0.346  
± 0.539i 

0.0311, 0.1741, 
0.485, 0.36 

0.1 -4, -4.5, -5, -1, -0.5 -3.74, -4.65, -5.068, -0.6956 
 ± 0.517i 

0.065, 0.033, 
0.014, 0.1378 

0.05 -8, -9, -10, -1, -0.5 -7.69, -9.125, -10.08, -0.729 
 ± 0.4674i 

0.038, 0.014, 
0.008, 0.134 

0.01 -40, -45, -50, -1, -0.5 -39.66, -45.1, -50.095, -0.7466 
± 0.4272i 

0.0086, 0.0025, 
0.0019, 0.14 

0.001 -400, -450, -500, 
-1, -0.5 

-399.65, -450.11, -500.10, -0.75 
± 0.42i 

0.00087, 0.00024, 
0.0002, 0.15 

 
TABLE 2 

COMPARISON OF ERROR IN POLE PLACEMENT FOR VARIOUS ε VALUES 

Value of 
ε 

Desired 
Pole Placement 

Percentage Error 
In Pole Placement 

0.5 -0.8, -0.9, -1, -1, -0.5 21.1 
0.1 -4, -4.5, -5, -1, -0.5 6.2 
0.05 -8, -9, -10, -1, -0.5 4.85 
0.01 -40, -45, -50, -1, -0.5 3.8 
0.001 -400, -450, -500, -1, -0.5 3.6 
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 Thus, it is clear from Table 2 that to obtain an error in pole placement of less than 5%, 

the ε value should be less than or near equal to 0.05. In this way, the robustness of system is 

assured. Once the robustness is verified, it is needed to verify the reliability of the system. 

Reliability in a practical sense means that even if one of the controllers of an individual 

subsystem or a part of any of the controller fails, the system should not deviate much from the 

desired performance. To verify reliability, the controller designed is used to find the error in pole 

placement by making one or more elements of matrix K intentionally zero. Tables 3 and 4 show 

the tabulated information of pole placements obtained and the deviation of the obtained poles 

from that of the desired poles for various cases of K, where, in each case, some components of 

the controller are considered to be failed. The desired pole placement, which acts as reference in 

calculating percentage error of pole placement, is (-4, -4.5, -5, -1, -0.5). 

 Table 3 provides the error for each pole placement, depending on the deviation of the 

obtained poles from the desired ones. Table 4 provides the summary of errors obtained on 

average in each failure case of controller K. 

 From the tabular values in Figure 4, it can be clearly seen that when the entire controller 

of a subsystem is considered, the error percentage is more than that of the controller included. It 

is also observed that the error percentage of the pole placement when only part of the controller 

of subsystem is neglected is smaller than that of the pole placement with the total controller 

excluded from the system. Therefore, it can be concluded that the percentage error in pole 

placement is more if the entire controller is excluded rather than neglecting part of it. It is also 

clear that even if a controller or part of it is fails, the percentage error is not more than 13%. 

Thus, the entire system is reliable, even if some components fail to work. 
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TABLE 3 

POLE PLACEMENTS OBTAINED FOR VARIOUS FAILURE CASES OF K 

Failure Cases of Controller K Pole Placements Obtained 
with Controller K 

Error/Deviation of 
Obtained poles from 

Desired Poles 
K  =     0.699   -0.184   0    0    0 
             0.241    0.842   0    0    0 

-3.746, -4.652, -5.0678, -0.6956 ± 
0.517i  

0.065, 0.033,  
0.014, 0.138 

   K  =        0            0       0    0    0 
              0.241    0.842   0    0    0 

-3.6739, -4.5925, -5.1455, -0.3732 
± 0.3426i 

0.0815, 0.0205, 
0.0291, 0.2467 

K  =     0.699   -0.184   0    0    0 
                0           0      0    0    0 

-3.9685, -5.0639±0.08i, -0.8016 
± 0.2562i 

0.0078, 0.124,  
0.0125, 0.1585 

K  =         0       -0.184   0    0    0 
              0.241    0.842   0    0    0 

-3.6923, -4.6024, -5.1506, -0.3565 
± 0.4643i 

0.0769, 0.0227, 
0.03012, 0.17 

K  =     0.699       0        0    0    0 
             0.241    0.842   0    0    0 

-3.726, -4.6379, -5.0636, -0.7153 
± 0.3983i 

0.0685, 0.0306, 
0.01272, 0.181 

K  =     0.699   -0.184   0    0    0 
                0       0.842   0    0    0 

-3.8, -4.7462, -5.0348, -0.6384 
± 0.4875i 

0.05, 0.0547, 
0.00696, 0.197 

K  =     0.699   -0.184   0    0    0 
               0.241        0      0    0    0 

-3.9451, -4.9239, -5.1163, 0.8572 
± 0.2623i 

0.0137, 0.094, 
0.0233, 0.197 

 
TABLE 4 

COMPARISON OF ERROR IN POLE PLACEMENT: DIFFERENT FAILURE CASES OF K 

Failure Cases of Controller  K Percentage Error in Pole Placement 
K   =    0.699   -0.184   0    0    0 

                         0.241    0.842   0    0    0 6.24 

K   =       0            0       0    0    0 
                         0.241    0.842   0    0    0 12.6 

K   =    0.699   -0.184   0    0    0 
                             0           0      0    0    0 10.61 

K   =        0       -0.184   0    0    0 
                         0.241    0.842   0    0    0 7.5 

K   =    0.699       0        0    0    0 
                         0.241    0.842   0    0    0 7.32 

K   =    0.699   -0.184   0    0    0 
                             0       0.842   0    0    0 7.71 

K   =    0.699   -0.184   0    0    0 
                         0.241        0      0    0    0 8.2 
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5.6 Summary 

 In this chapter, the techniques discussed in earlier chapters were used and implemented to 

design a controller for a decentralized singularly perturbed system. To have a reference design 

for comparison purposes, a decentralized control was designed for a full-order system. Later, 

using singular perturbation, a reduced-order model was found, and a decentralized control was 

designed for it. Then the reduced model controller was implemented on full-order system and the 

resulting closed-loop system was found. The performance of this closed-loop system was 

compared to that of the closed-loop system from a full-order design. This developed procedure 

was applied on a real-time practical system of a decentralized power system, which was both 

decentralized and singularly perturbed. Upon application on a power system, it was observed that 

the system had a controller that was reliable and robust in nature. It was also observed that the 

computational needs were lessened and the cost of implementing the controller was reduced 

because of zero elements in the controller matrix, Kr. This system lost some accuracy because of 

the approximation of the slow-response system. 
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CHAPTER 6 
 

CONCLUSIONS 
 
 

6.1 Conclusions 

 The two methods of obtaining a system controller were discussed. Combining both 

methods and applying them to a decentralized singularly perturbed power system demonstrated 

this to be a simplified procedure in many aspects. The designed controller assured a stable pole 

placement. Robustness of the system was verified by providing a fixed set of values for ε—the 

parameter of a singular perturbation. The controller was also demonstrated to be reliable by 

observing the results that even failure of one or more components of a controller resulted in the 

being less than a prestated percentage. Therefore stability, robustness, and reliability of the 

system were achieved, although the procedural methods were simplified to a great extent. One of 

the main advantages of this method is the reduced computational costs since the controller needs 

to be designed only for the reduced-order model. Another advantage is the cost of controller 

implementation, since the designed controller has many zero elements in it. For this example, 

reliability was guaranteed by showing that if the controller from one subsystem fails, the 

controller from another system acts as back up and serves the purpose. The disadvantage of this 

method is that because of the aggregation of the slow-response system in the reduced-order 

model, some accuracy was lost. This in turn resulted in an increase of error in pole placement. 

But this can be compensated with other benefits. Finally, it can be concluded that this method of 

controller design for decentralized singularly perturbed systems is efficient enough to serve the 

desired purpose of reliability and robustness. 
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6.2 Scope of Future Work 

 This thesis work presented the controller design for a decentralized singularly perturbed 

system having state feedback. This work could be extended to output feedback systems. To 

obtain the optimal controller, the optimal linear quadratic (LQ) design could be used to obtain 

the Q and R of the equations. Another approach that could be followed would be to use the H  

controller method to design the controller for a large-scale system. 
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APPENDIX A 

MATLAB M-File for Decentralized Controller of Full-Order System 

% Full-order system 

  

af=[0 1 0 1 1; 0 0 1 0.1 1; 4 -1 2 0 0.5; 0.4 0.2 0 0 1; 0.5 0.2 1 -1 2] 

bf=[0 0; 0 0; 1 0; 0 0; 0 1] 

 

a11=af(1:3,1:3) 

a12=af(1:3,4:5) 

a21=af(4:5,1:3) 

a22=af(4:5,4:5) 

b1=bf(1:3,1) 

b2=bf(4:5,2) 

 

eig(a11) 

eig(a22) 

 

p1=[-5+2i -5-2i -10] 

p2=[-2+1i -2-1i] 

 

k1=place(a11,b1,p1) 

k2=place(a22,b2,p2) 

 

a1=a11-b1*k1 

a2=a22-b2*k2 

eig(a1) 

[V1, D1] = eig(a1)    

eig(a2) 

[V2, D2] = eig(a2)    

 

M1=[real(V1(1,1)) imag(V1(1,1)) real(V1(1,3));real(V1(2,1)) imag(V1(2,1)) 

real(V1(2,3)); real(V1(3,1)) imag(V1(3,1)) real(V1(3,3))] 

M2=[real(V2(1,2)) imag(V2(1,2)); real(V2(2,2)) imag(V2(2,2))]    

 

af11=(inv(M1))*a1*M1 

af22=(inv(M2))*a2*M2 

af12=(inv(M1))*a12*M2 

af21=(inv(M2))*a21*M1 

bf1=(inv(M1))*b1 

bf2=(inv(M2))*b2 

 

AF11=af11 

AF22=af22 

AF12=(eye(3)-bf1*(inv(bf1'*bf1))*bf1')*af12 

AF21=(eye(2)-bf2*(inv(bf2'*bf2))*bf2')*af21 

 

A=[AF11 AF12; AF21 AF22] 

 

eig(A) 
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APPENDIX B 

MATLAB M-File for Reduced-Order Controller Design for State Feedback 

% Full-order system 
af=[-1/5 1/5 0 0; 0 -1/2 1/2 0; 0 0 0 1; 0 0 -1 -2] 
bf=[0; 0; 0; 1] 
cf=[1 0 0 0] 
df=0 
% seperating slow and fast transient states 
a11=af(1:2,1:2) 
a12=af(1:2,3:4) 
a21=af(3:4,1:2) 
a22=af(3:4,3:4) 
b1=bf(1:2,1) 
b2=bf(3:4,1) 
c1=cf(1,1:2) 
c2=cf(1,3:4) 
% making e=0, obtaining reduced-order model / singular perturbation technique 
ga=a11-a12*(inv(a22))*a21 
gb=b1-a12*(inv(a22))*b2 
gc=c1-c2*(inv(a22))*a21 
gd=-c2*(inv(a22))*b2 
% designing controller for reduced-order model with state feedback 
s=[-0.3 -0.4] 
k=place(ga,gb,s) 
ac=ga-gb*k 
%Comparision of pole placement when e=0.1  
af1=[-1/5 1/5 0 0; 0 -1/2 1/2 0; 0 0 0 10; 0 0 -10 -20] 
bf1=[0; 0; 0; 10] 
cf1=[1 0 0 0] 
df1=0 
eig(af1) 
% Implementing controller of reduced-order model to the full-order system 
% with e=0.1 
Kp=[k 0 0] 
ap1=af1-bf1*Kp 
% Verifying the pole placement after design using reduced-order model with 
% e=0.1 
eig(ap1) 
% Design of controller for full-order system with e=0.1 
o1=[-0.3 -0.4 -10 -10.1] 
Ko1=place(af1,bf1,o1) 
ao1=af1-bf1*Ko1 
eig(ao1) 
%Comparision of pole placement when e=0.01 
af2=[-1/5 1/5 0 0; 0 -1/2 1/2 0; 0 0 0 100; 0 0 -100 -200] 
bf2=[0; 0; 0; 100] 
cf2=[1 0 0 0] 
df2=0 
eig(af2) 
% Implementing controller of reduced-order model to the full-order system 
% with e=0.1 

Kp=[k 0 0] 
ap2=af2-bf2*Kp 
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APPENDIX B (continued) 

% Verifying the pole placement after design using reduced-order model with 
% e=0.1 
eig(ap2) 
% Design of controller for full-order system with e=0.01 
o2=[-0.3 -0.4 -100 -101] 
Ko2=place(af2,bf2,o2) 
ao2=af2-bf2*Ko2 
eig(ao2) 
% Verifying the pole placement after design using full-order model with 
% e=0.1 
eig(ao1) 
eig(ap1) 
% Verifying the pole placement after design using full-order model with 
% e=0.01 
eig(ao2) 
eig(ap2  
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APPENDIX C 

MATLAB M-File for Reduced-Order Controller Design for Output Feedback 

% Full-order system 
af=[-1/5 1/5 0 0; 0 -1/2 1/2 0; 0 0 0 1; 0 0 -1 -2] 
bf=[0; 0; 0; 1] 
cf=[1 0 0 0] 
df=0 
% seperating slow and fast transient states 
a11=af(1:2,1:2) 
a12=af(1:2,3:4) 
a21=af(3:4,1:2) 
a22=af(3:4,3:4) 
b1=bf(1:2,1) 
b2=bf(3:4,1) 
c1=cf(1,1:2) 
c2=cf(1,3:4) 
% making e=0, obtaining reduced-order model / singular perturbation technique 
ga=a11-a12*(inv(a22))*a21 
gb=b1-a12*(inv(a22))*b2 
gc=c1-c2*(inv(a22))*a21 
gd=-c2*(inv(a22))*b2 
% designing controller for reduced-order model 
s=[-0.3, 0; 0, -0.4] 
[ng,dg]=ss2tf(ga,gb,gc,gd) 
Dd=[0 1 0.7 0.012] 
f=Dd; 
m=length(ng) 
nn=length(dg) 
n=nn-1 
n2=2*n 
padzero=zeros(1,nn-m) 
ngpad=[padzero ng] 
s_coll2=flipdim([dg' ngpad'],1) 
sylv=zeros(2*n) 
for i=1:2:2*n-1, 
    bgnrow=(i+1)/2 
    sylv(bgnrow:bgnrow+n,i:i+1)=s_coll2 
end; 
delta=flipdim(Dd',1) 
x=sylv\delta; 
for i=1:2:2*n-1, 
    r=(i-1)/2; 
    a1(n-r)=x(i); 
    a1=real(a1); 
    b1(n-r)=x(i+1); 
    b1=real(b1); 
end; 
a1=real(a1) 
b1=real(b1) 
[k1a,k1b,k1c,k1d]=tf2ss(b1,a1) 
k=[k1a k1b; k1c k1d]' 

I=[1; 1] 
ac=ga-gb*k*I*gc 
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APPENDIX C (continued) 

p=length(ac) 
G=kron(eye(p),ac)-kron(s.',eye(p)) 
V=G(1:p,1:p) 
Tt=inv(V); 
T=Tt' 
vin=Tt*V 
%Comparision of pole placement when e=0.1  
af1=[-1/5 1/5 0 0; 0 -1/2 1/2 0; 0 0 0 10; 0 0 -10 -20] 
bf1=[0; 0; 0; 10] 
cf1=[1 0 0 0] 
df1=0 
eig(af1) 
% Implementing controller of reduced-order model to the full-order system 
% with e=0.1 
Kp=[k 0 0] 
ap1=af1-bf1*Kp 
% Verifying the pole placement after design using reduced-order model with 
% e=0.1 
eig(ap1) 
% Design of controller for full-order system with e=0.1 
o1=[-0.3 -0.4 -10 -10.1] 
Ko1=place(af1,bf1,o1) 
ao1=af1-bf1*Ko1 
eig(ao1) 
%Comparision of pole placement when e=0.01 
af2=[-1/5 1/5 0 0; 0 -1/2 1/2 0; 0 0 0 100; 0 0 -100 -200] 
bf2=[0; 0; 0; 100] 
cf2=[1 0 0 0] 
df2=0 
eig(af2) 
% Implementing controller of reduced-order model to the full-order system 
% with e=0.1 
Kp=[k 0 0] 
ap2=af2-bf2*Kp 
% Verifying the pole placement after design using reduced-order model with 
% e=0.1 
eig(ap2) 
% Design of controller for full-order system with e=0.01 
o2=[-0.3 -0.4 -100 -101] 
Ko2=place(af2,bf2,o2) 
ao2=af2-bf2*Ko2 
eig(ao2) 
% Verifying the pole placement after design using full-order model with 
% e=0.1 
eig(ao1) 
eig(ap1) 
% Verifying the pole placement after design using full-order model with 
% e=0.01 
eig(ao2) 
eig(ap2) 
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APPENDIX D 

MATLAB M-File for Decentralized Controller of Full-Order Power System 

% Full-order system 

  
af=[-0.5 0 0.1 -0.2 0.1; 0 -1 0.1 0.3 -0.2; 4 3 -5 0 0; -4 4 0 -4.5 0; 3.5 3 

0 0 -4] 
bf=[1 0 ; 0 1 ; 4 0 ; 0 -5 ; 0 6] 
eig(af) 

  
a11=af(1:2,1:2) 
a12=af(1:2,3:5) 
a21=af(3:5,1:2) 
a22=af(3:5,3:5) 
b1=bf(1:2,1:2) 
b2=bf(3:5,1:2) 
eig(a11) 
eig(a22) 
p1=[-1 -0.5] 
p2=[-4 -4.5 -5] 
k1=place(a11,b1,p1) 
k2=place(a22,b2,p2) 
a1=a11-b1*k1 
a2=a22-b2*k2 

  
eig(a1) 
[V1, D1] = eig(a1)    
eig(a2) 
[V2, D2] = eig(a2)    
M1=[real(V1(1,1)) real(V1(1,2)); real(V1(2,1)) real(V1(2,2))] 
M2=[real(V2(1,1)) real(V2(1,2)) real(V2(1,3)); real(V2(2,1)) real(V2(2,2)) 

real(V2(2,3)); real(V2(3,1)) real(V2(3,2)) real(V2(3,3))] 

    
af11=(inv(M1))*a1*M1 
af22=(inv(M2))*a2*M2 
af12=(inv(M1))*a12*M2 
af21=(inv(M2))*a21*M1 
bf1=(inv(M1))*b1 
bf2=(inv(M2))*b2 

  
k12=((inv(bf1'*bf1))*bf1'*af12)' 
k21=((inv(bf2'*bf2))*bf2'*af21)' 

  
AF11=af11 
AF22=af22 
AF12=(eye(2)-bf1*(inv(bf1'*bf1))*bf1')*af12 
AF21=(eye(3)-bf2*(inv(bf2'*bf2))*bf2')*af21 

  
A=[AF11 AF12; AF21 AF22] 
eig(A) 
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APPENDIX E 

MATLAB M-File for Reduced-Order Decentralized Controller Design for State 
Feedback of a Decentralized Power System 

% Full-order system 

  
af=[-0.5 0 0.1 -0.2 0.1; 0 -1 0.1 0.3 -0.2; 4 3 -5 0 0; -4 4 0 -4.5 0; 3.5 3 

0 0 -4] 
bf=[1 0 ; 0 1 ; 4 0 ; 0 -5 ; 0 6] 
eig(af) 

  
a11=af(1:2,1:2) 
a12=af(1:2,3:5) 
a21=af(3:5,1:2) 
a22=af(3:5,3:5) 
b1=bf(1:2,1:2) 
b2=bf(3:5,1:2) 
eig(a11) 
eig(a22) 
p1=[-1 -0.5] 
p2=[-4 -4.5 -5] 

  
k1=place(a11,b1,p1) 
k2=place(a22,b2,p2) 
a1=a11-b1*k1 
a2=a22-b2*k2 
eig(a1) 
[V1, D1] = eig(a1)    
eig(a2) 
[V2, D2] = eig(a2)    
M1=[real(V1(1,1)) real(V1(1,2)); real(V1(2,1)) real(V1(2,2))] 
M2=[real(V2(1,1)) real(V2(1,2)) real(V2(1,3)); real(V2(2,1)) real(V2(2,2)) 

real(V2(2,3)); real(V2(3,1)) real(V2(3,2)) real(V2(3,3))] 

    
af11=(inv(M1))*a1*M1 
af22=(inv(M2))*a2*M2 
af12=(inv(M1))*a12*M2 
af21=(inv(M2))*a21*M1 
bf1=(inv(M1))*b1 
bf2=(inv(M2))*b2 

  
k12=((inv(bf1'*bf1))*bf1'*af12)' 
k21=((inv(bf2'*bf2))*bf2'*af21)' 

  
AF11=af11 
AF22=af22 
AF12=(eye(2)-bf1*(inv(bf1'*bf1))*bf1')*af12 
AF21=(eye(3)-bf2*(inv(bf2'*bf2))*bf2')*af21 

  
A=[AF11 AF12; AF21 AF22] 

  
eig(A) 


