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ABSTRACT

The use of electric propulsion (EP) in satellites for transfer to geosynchronous equa-

torial orbit (GEO) is increasingly gaining importance among the space industry all around

the world, and is proven a key for new space missions. In a conventional launch, the satellite

is placed into a geostationary transfer orbit (GTO) by the launch vehicle and uses chem-

ical propellants to reach GEO. This orbital transfer maneuver typically takes a few days.

However, even though EP is far more efficient than the conventional chemical propulsion, its

low thrust generation adds the complexity of longer transfer time from an equatorial orbit

to GEO. This longer transit time leads to exposure of spacecraft to hazardous radiation of

Van Allen belts. Therefore, there is a need to develop a method to determine the minimum

transfer time trajectory for all-electric low thrust orbit raising problem.

This thesis proposes a new formulation that facilitates the application of reinforce-

ment learning to the problem of orbit raising. This work is based on the approach that

the electric orbit-raising problem is posed as a sequence of multiple trajectory optimization

sub-problems. Each sub-problem aims to move the spacecraft closest to GEO by minimiz-

ing a convex combination of suitably selected objectives. A mathematical formulation for

the orbit-raising problem is proposed in the framework of reinforcement learning to enable

adaptive modification of the objective function weights during a transfer. Due to high di-

mensionality of the planning states of the orbit-raising problem, artificial neural networks

are then constructed and trained on orbit-raising scenarios in order to compute the reward

functions associated with reinforcement learning. The reward function for a planning state

is defined as the time required to reach GEO from that planning state. With the help of

numerical simulations for planar and non-planar transfer scenarios, it is demonstrated that

there is a reduction in transfer time for low-thrust orbit raising problem with the proposed

methodology.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

For many years now, onboard low-thrust electric propulsion has been proving more

efficient than chemical propulsion, owing to the reduced fuel consumption[1]. Electric Propul-

sion (EP) is a class of space propulsion that has the largest market potential for commercial

GEO telecommunication satellites. In 2017, the EUTELSAT 172B satellite, an “all-electric”

built by Airbus DS, reached geostationary orbit by using the all-electric architecture [2].

In the last two decades, commercial GEO telecommunication satellites have become more

competitive among satellite operators with the adoption of EP for North-South Station

Keeping (NSSK) and Electric Orbit Raising (EOR) [3]. These telecommunication satel-

lites are launched into initial orbits like Low Earth Orbit (LEO), Geostationary Transfer

Orbits (GTO) and then with the help of onboard propulsion, orbit-raising maneuvers are

performed to reach GEO. Table 1.1 provides the data for the initial orbit specifications taken

from Falcon 9 user manual[4].

Table 1.1: Specifications of initial orbits

Initial Orbit
Orbit Altitude

(km)

Inclination angle

(deg)

LEO 200-2000 28.5, 38, 51.6

GTO 10000-100000 15, 17, 19, 21, 23, 25, 28.5

Telecommunication satellites using EP for orbit-raising have greater appeal since the

propellant mass saved can be used to accommodate larger and more complex payloads.

Besides, in the last decade, the trend in GEO telecommunication satellites has consolidated

into a considerable increase in electrical power to satisfy the payload needs [5]. Specific

1



mission requirements, in terms of power availability, satellite mass, and mission profile,

dictate the choice of the particular EP technology which is used for a mission.

Although limited to being used for station-keeping for a number of years, recent

advancements in all-electric propulsion architecture have seen satellites perform the orbit-

raising maneuver using EP. The major advantage of all-electric architecture over traditional

chemical (and even hybrid) systems is that it enables the design of smaller and lighter

satellites that can be potentially launched at the same time thereby reducing launch costs[6].

However, the biggest trade-off is the transfer time to GEO; while chemical propulsion

gets the job done in days, EP takes months because of the low-thrust generated by the electric

thrusters [7]. The longer transfer time leads to degradation of solar arrays of the satellite

due to continuous exposure to Van Allen radiation[8] which are the doughnut-shaped zones

of highly energetic charged particles trapped within the zones in the magnetic field of Earth.

In this thesis, the problem of electric orbit-raising has been revisited as detailed in a recent

work that computes low-thrust orbit-raising trajectories in a fast and robust manner [9].

The considered low-thrust orbit-raising problem is posed as a sequence of multi-revolution

optimal control subproblems. This framework of multiple subproblems aims to minimize the

distance of the spacecraft from GEO for every subproblem without the need of initial guess,

thereby generating electric orbit-raising trajectories in a fast automated way. However, these

solutions obtained comes at the cost of suboptimality of the generated solutions.

Motivated by the aim of reducing this optimality gap of the computed solutions, this

thesis introduces an approach that builds upon the branch of machine learning (ML). It

is believed that recent advancements in the field of machine learning may hold the answer

to our problem. By definition, ML allows systems to improve their behaviors as they gain

experience. To this end, the application of machine learning techniques to spacecraft orbit

raising problems are considered to improve previously computed solutions by this method.
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1.2 Literature Review

1.2.1 Low-thrust Orbit Raising Optimization

Over the last few decades, researchers have been focusing on how to solve optimal

control problem associated with electric low-thrust maneuvers concerning different mission

scenarios [10, 11, 12]. For low thrust mission scenarios, as mentioned earlier, the primary

concern of using all-electric spacecraft is the long transfer time taken by the spacecraft to

reach GEO. Moreover, spacecraft is encountered by multiple eclipses during its route which

further prolongs the transfer time unless stored energy is provided to electric thrusters to op-

erate during eclipses[13]. That is why electric orbit-raising problem mission scenarios should

be investigated closely with a variety of required crucial factors by the mission designers.

These include the initial orbit of the spacecraft, propellant mass, delivered dry mass, the

capacity of the solar array panels to generate thrust during transfer, collision avoidance with

external objects, the type of thrusters to be used including but not limited to Hall, Arcjet,

Magneto Plasma Dynamic (MPD) or Ion thrusters and the type of power source during

eclipses. Therefore, a mission designer has to investigate variety of scenarios in order to

obtain trajectory with least time.

The problem of minimum-time trajectory determination is an optimal control prob-

lem which has been studied by numerous researchers within the field of low thrust orbit

raising[14, 15]. In general, an optimal control problem is solved by applying numerical meth-

ods from the calculus of variations. To solve low-thrust trajectory optimization. traditional

approaches uses this calculus of variation technique [16]. Indirect optimization methods

transform a problem into a nonlinear two-point boundary value problem (TPBVP) with

necessary conditions of optimality. These necessary conditions defined by a set of ordinary

differential equations which are solved along the equations of motion given constraints on

initial or final states. Solutions to TPBVP are then obtained by various methods, including a

well-known shooting method [17]. This solution is at least locally optimal since the first-order

necessary conditions for optimality are satisfied. Thorne and Hall [18] found the method for
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minimum transfer time for circular to circular orbit-raising by indirect optimization method

in 1996. However, TPBVP is sensitive to the initial guess with a small convergence domain

that implies a small change in the values can lead to divergence. This leads to difficulty in

converging to an optimal solution.

In order to overcome this issue, another approach called direct optimization methods

are used. One can discretize the state and control variables with respect to time and apply

quadrature rules across the discretized segments in order to set up a parameter optimization

problem which is a nonlinear programming problem[19, 20], solved by software such as

Sparse Nonlinear OPTimizer (SNOPT), Interior Point OPTimizer (IPOPT) [21, 22, 23].

Even though convergence rate of direct methods for low-thrust optimization is better than

indirect methods, direct methods still need some kind of user-input initial guesses. Due to

the lack of exact knowledge about these initial guesses, a number of studies such as shape-

based methods [24, 25, 26, 27, 28, 29] and guidance-based schemes [30, 31, 32], have been

investigated in order to generate approximate solutions to low-thrust optimization problem.

These solutions can be used as a good initial guesses for direct or indirect optimization

methods.

The problem of electric orbit-raising has been studied using a variety of different dy-

namic models, and Ref.[33] provides a comparison of a variety of dynamic models, specifically

for their influence on the convergence of numerical optimization schemes for computing the

low-thrust trajectory. By providing comparisons with various state variable models, a set of

newly introduced regularized elements (Ref.[9]) was proved to be efficient for the low-thrust

orbit-raising problem. The key advantages of using this dynamic model are:

• The singularity vanishes for both equatorial or circular orbits.

• Since among the regularized elements, five are constant for Keplerian motion that

change slowly under the action of perturbations. This makes them suitable for use in

trajectory optimization schemes that compute long-time-scale transfers.
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1.2.2 Machine Learning

Artificial Intelligence (AI) is an interdisciplinary science with multiple approaches

that includes the systems that think like humans, systems that act rationally, systems that

act like humans and systems that act rationally[34]. However, advancements in machine

learning are creating a paradigm shift in virtually every sector of the tech industry. Machine

learning (ML) is the method in the field of artificial intelligence which involves different

learning techniques for systems to automatically learn and improve from experience without

being explicitly programmed. In ML literature, there are three types of learning techniques

commonly used based on the type of problem in consideration. These types are:

i) Supervised learning

ii) Unsupervised learning

iii) Reinforcement learning

Supervised learning

Supervised learning is a type of machine learning in which learning is done offline from

a labeled training dataset provided by a knowledgeable teacher. The goal is to approximate

the function from the labelled training dataset. This function is then used to predict the

output variables for the new untrained input data. A detailed comparison of supervised

learning algorithms is given by Ref.[35] This is an important kind of learning, but alone it

is not adequate for learning from interaction with the environment.

Unsupervised learning

Unsupervised learning is another type of machine learning in which learning is typi-

cally about finding structure hidden in collections of unlabeled data. Unsupervised learning

tries to make sense of the structure in the given data and responds accordingly. Unsuper-

vised learning has many applications in the real world. Clustering is an important type of

learning when it comes to unsupervised learning. In the medical field, it has been proven to
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be a powerful tool [36]. Other typical applications of unsupervised learning are included in

the fields of genome informatics[37] and telecommunications fraud detection[38].

Reinforcement learning

Reinforcement learning (RL) is one of the learning techniques used in machine learn-

ing for solving sequential decision problems [39]. It was originally developed as a way of

describing observations in animal behavior and has been successfully used in applications in

various domains such as medical imaging [40], finance and management [41], cryptocurrency

[42], robotics [43], cell-phone network routing [44] and control theory [45, 46, 47, 48]. These

RL problems can be formalized by Markov decision process (MDP). By describing a prob-

lem in terms of a MDP, dynamic programming(DP) techniques may be applied to find an

optimal solution in which a complex problem is broken into simple similar sub-problems, so

that their results can be re-used. Dynamic programming however requires that a complete

and accurate model of the environment is available, and this may not be the case. RL allows

an agent to learn in an uncertain environment by building up an internal model of its en-

vironment through sample interactions. As its understanding of the environment increases

with experience the learning agent may predict with more confidence which actions will tend

to lead to preferred results. The working of RL is depicted in Figure 1.1.

Figure 1.1: Representation of Reinforcement Learning

In recent years, machine learning has been applied to several aerospace problems, a

survey of which can be found in Ref. [49]. Geometric Reinforcement Learning (GRL) where
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reward matrix is adaptively updated based on the geometric distance and risk information

shared by other UAVs is proposed for Unmanned Aerial Vehicles (UAVs) path planning[50],

Proximal Policy Optimization (PPO) method which is a complex policy that is developed by

training a neural network controller to solve a low-trust optimal control problem[51] and Q-

Learning is used for path planning for a spacecraft to maneuver through a satellite cluster[52].

The Q-Learning algorithm allows the satellite controller to make sequential decisions in order

to safely navigate through the environment. This algorithm is later augmented by Deep

Neural Network (DNN) which results in Deep Q-Network (DQN).

1.2.3 Neural Networks

Artificial Neural Network (ANN) is a collection of simple high-speed computational

devices that are connected and can learn to do tasks aided by parallel computing. ANNs

are inspired by biological neural networks in the human brain. Learning of a neural network

(NN) is necessary when the information about inputs/outputs is unknown or incomplete a

priori, so that no design of a network can be performed in advance. Almost all the neural

networks require learning in a supervised mode, unsupervised mode or reinforcement mode.

A neural network is an ANN with artificial neurons that mimic the operations of a human

brain to recognize relationships between vast amounts of data. While neural networks can

learn to solve enormously diverse tasks, the inner workings of these models are often difficult

to comprehend.

Moreover, neural networks have got the attention of various researchers in the field

of spaceflight mechanics, especially as an application to spacecraft trajectory optimization.

For instance, in Ref. [53] trained NNs are used for mass optimal control for Earth-Mars

transfers, Ref. [54] depicts the performance of the trained NNs for time-optimal low-thrust

orbit raising problems.

1.3 Thesis Contributions

The contribution of this thesis are as follows:
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1. This thesis presents a parametric study in order to investigate the impact of the relative

weights of the objective function on the orbit-raising transfer time. This is done to

reduce the optimality gap of the computed solutions generated by the considered orbit-

raising trajectory optimization method. The parametric study provides insight into

selection of objective function weights which remain constant during the orbit-raising

maneuver. The work has been published in the proceeding of 29th AAS/AIAA Space

Flight Mechanics Meeting [21].

2. This thesis develops a new formulation that allows the application of reinforcement

learning to the orbit-raising problem. The proposed reinforcement learning framework,

aided by neural networks, provide a mechanism to modify the weights during the

maneuver. This work has been recently published in AIAA Scitech 2020 Forum [55].

1.3.1 Organization of Thesis

The thesis is organized as follows. Chapter 2 describes the spacecraft translational

dynamics and dynamic model used for the low-level optimization for orbit-raising problem.

It also briefly describes the optimization scheme used for our low-level optimization problem

for orbit-raising. Chapter 3 introduces the formulation of high-level planning problem for

optimizing the relative weights and how it is integrated with the low-level optimization

scheme. Furthermore, it describes the machine learning technique in consideration, that is,

reinforcement learning which is used to optimize the relative weights of the objective function

for low-level optimization problem for orbit-raising. In Chapter 4, the implementation of the

proposed reinforcement learning algorithm to the given planning problem is demonstrated

and discussed with the help of various numerical examples. Chapter 5 summarizes the work

and recommends future directions.
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CHAPTER 2

MATHEMATICAL FORMULATION OF ORBIT-RAISING PROBLEM

In this chapter, the mathematical formulation of the low-thrust orbit-raising problem

is developed allowing the application of a reinforcement learning technique. Specifically,

this is formulated as a two-step decision-making process: a low-level trajectory optimization

problem and a high-level planning problem. The low-level optimization problem determines

the spacecraft trajectory over a planning horizon by optimizing a convex combination of

objective functions, while the high-level planning problem decides on the objective function

weights. To facilitate this formulation, a set of planning states is introduced apart from the

spacecraft state variables, and also outline the dynamics associated with the planning states

apart from the spacecraft dynamic equations. This chapter provides the spacecraft dynamics

and low level optimization scheme associated with it.

2.1 Minimum-time Trajectory Optimization for Orbit-raising

Numerous researchers have looked at the problem of optimal low-thrust trajectories

in general and various studies have investigated the orbit-raising problem in particular over

the last few decades. Popular research topic includes use of optimal-control trajectories

to minimize time or fuel usage of constant-thrust transfers. The problem of minimum-

time control is solved for constant-thrust coplanar transfers to generate simple graphical

and analytical tools to relate vehicle design parameters to orbit design parameters for orbit

raising[56]. In Ref.[12], a direct optimization framework for near-optimal minimum-time

low Earth orbit (LEO) to geostationary orbit (GEO) and geosynchronous transfer orbit

(GTO) to GEO transfers is developed and examined showing robust results. Moreover, in

Ref.[57] parameterized control law is employed together with orbital averaging in order to

solve three common near-optimal minimum-time Earth-orbit transfers. In addition, a direct

optimization method for the electric orbit-raising problem is employed using equinoctial
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elements [22]. Later, minimum-time transfers using direct collocation for a range of initial

thrust accelerations and constant specific impulse values are addressed by Ref.[14].

Within the literature of electric orbit-raising, a number of studies have been investi-

gated which to compute initial guesses to generate the solution for low thrust trajectory. An

intelligent guess is constructed for the multiple-phase optimal orbit-raising control problem

with eclipsing constraint by considering a series of single-phase optimal control problems

that are solved by the adaptive collocation method [23]. The receding horizon technique is

used in Ref.[58] to construct an initial guess for low thrust orbit transfers. These studies

require initial guess in order to generate the solution for low thrust trajectory. However,

Ref.[9] explores an unconstrained optimization scheme that allows the computation of the

electric orbit-raising trajectory in the order of tens of seconds without the need for any

user-inputted initial guess. In addition, the formulation has the benefit to analyze numerous

electric orbit-raising mission scenarios without the need for intervention by the user. The

low-level optimization problem is solved by considering the same methodology in this work.

2.2 Translational Dynamics

Low-thrust trajectory optimization involves the translational dynamics of the space-

craft. This dynamics is based on Newtonian mechanics, in which Newton’s law of gravitation

states that an object attracts the other with a force equal to the product of their masses and

inversely proportional to the square of the distance between them. A combination of this

law with Newton’s equations of motion forms the basis to study the orbital motion of the

objects. For the electric orbit-raising mission, only two-body body problem is considered for

low-level problem in this work. In the two-body problem, two assumptions are considered.

First, only two bodies which are spherical and have uniform density are considered. Another

assumption is that these bodies are point masses. However, these assumptions do not hold in

reality. Presence of three bodies and perturbations somehow change the orbit significantly.

Two-body problem is described as follows:
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Consider vectors r1 and r2 which represent the position of the two bodies with masses

m1 (Earth) and m2 (spacecraft) with respect to the origin of the frame I in Figure 2.1.

Figure 2.1: Schematic for Two-body problem

The spacecraft position vector with respect to the celestial body by r and the velocity

vector by v. Therefore, spacecraft translational motion can be described by the equations:

ṙ = v

v̇ = − µ
r3
r + u

(2.1)

where r is the magnitude of vector r, µ is Earth’s gravitational parameter due to

gravity, u includes the thrust and perturbations. In this work, the effect of perturbations is

not considered, which therefore imply that only thrust forces are considered.

2.3 Optimization of Orbit-raising Subproblem

A multi-revolution large-scale optimal control problem is broken into a sequence of

optimization sub-problems. To define the trajectory optimization sub-problem, the space-

craft states x are represented by a set of so-called dynamical variables. These parameters

include the specific angular momentum h, components of the specific angular momentum

vector (hX and hY ) along the X and Y axes of the Earth-centered inertial reference frame

I, the components of the eccentricity vector (ex and ey) along the x and y axes of the non-
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inertial reference frame obtained after a 2-1 rotation sequence from the inertial frame, and

a true-anomaly like angle φ identifying the location of the spacecraft. The state vector is

therefore given by x =

[
h, hX , hY , ex, ey, φ

]T
. The spacecraft’s equation of motion is given

as:

ẋ = F(x) + G(x)u, (2.2)

where u ∈ R3 represents the control thrust vector, F ∈ R6 represents the Keplerian rate of

change of state variables and G ∈ R6×3 represents the rate of the change of the state variable

provided by onboard thrusting. The state space description is provided below [9]:

F =



0

0

0

0

0

µ2B2

h3


, A = ex sinφ− ey cosφ, B = 1 + ex cosφ+ ey sinφ (2.3)

G =



0 h2

µmB
0

0 hhx
µmB

h2
√
h2−h2x−h2y

µmB
√
h2−h2y

sinφ+ hhxhy

µmB
√
h2−h2y

cosφ

0 hhy
µmB

−h
√
h2−h2y
µmB

cosφ

h sinφ
µB

2h cosφ
µm

+ hA sinφ
µmB

heyhy sinφ

µmB
√
h2−h2y

−h cosφ
µB

2h sinφ
µm
− hA cosφ

µmB
− hexhy sinφ

µmB
√
h2−h2y

0 0 − hhy sinφ

µmB
√
h2−h2y


, (2.4)

Trajectory over each segment is discretized into p + 1 nodes and is denoted by φj

the angles demarcating the discretized nodes, where j = 0, ..., p. For every revolution, the

dynamical states h, hX , hY , ex and ey are assumed to be approximately constant. Conse-

quently, the trajectory of the spacecraft is represented in the shape of a conic section. The
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discretization of the trajectory over one revolution is depicted by Figure 2.2. The details of

this optimization algorithm can be found in Ref. [9].

Figure 2.2: Subdivision of trajectory over one whole revolution

This optimization sub-problem methodology allows the computation of the electric

orbit-raising trajectory without the need for any user-inputted initial guess in the matter of

a few seconds.

GEO is described as a circular orbit which has altitude 35786 km with 0 degree in-

clination, as per Inter-Agency Space Debris Coordination (IADC)[59],. Its orbital period is

one sidereal day which matches with Earth rotation period. The objective of each optimiza-

tion sub-problem is to move the spacecraft as close to GEO as possible at the end of each

revolution. The proximity to GEO is determined by the following quantities:

i) The difference of the magnitude of the specific angular momentum h for the osculating

orbit and the GEO,

ii) The difference in eccentricity e =
√
e2x + e2y of the osculating orbit and that of GEO,

iii) The difference of the magnitude of the projection of the angular momentum vector to

the inertial X-Y plane (hxy =
√
h2X + h2Y ) .
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The objective function to be minimized is written in the form of a convex combination

of three factors mentioned above:

J = min[wh(hGEO − hend)2 + we(e
2
x,end + e2y,end) + whxy(h

2
x,end + h2y,end)], (2.5)

where the subscript end indicates the dynamical variables at the end of a revolution.

In addition, wh, we and whxy represent the relative weights for the three individual compo-

nents of the objective function as described above. Note that, the sum of the weights equals

1, that is

wh + we + whxy = 1 (2.6)

For the special case of planar transfer in which the orientation of the orbit is not considered.

Therefore, in planar transfer h2X + h2Y = 0 by definition, hence, there is no need to consider

the third weight factor. In such a scenario, the only state variables that are relevant for the

transfer are h, ex and ey and the objective function gets reduced to:

Jp = min
[
wh(hGEO − hend)2 + we(e

2
x,end + e2y,end)

]
. (2.7)

The overall optimization algorithm is depicted in the form of a flowchart in Figure 2.3.
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Figure 2.3: Low-level optimization algorithm flowchart

2.3.1 Terminal conditions

These stopping conditions determine that if the spacecraft has reached its final des-

tination, that is, GEO. The targetted GEO parameters are the magnitude of the specific

angular momentum, eccentricity and the magnitude of the projection of the angular mo-

mentum on the inertial X-Z plane. By the definition of GEO, tolerances on the eccentricity,

semi-major axis, and inclination angle are set accordingly. These criteria is given by:

0 ≤
√
e2x,end + e2y,end ≤ etol, (2.8)

aGEO − atol ≤
h2end

µ(1− e2x,end − e2y,end)
≤ aGEO + atol (2.9)

0 ≤

√
h2X,end + h2Y,end

h
≤ sin itol (2.10)
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where etol, atol and itol are the tolerances defined for eccentricity, semi-major axis and

inclination angle of the GEO, respectively.

2.4 Parametric Study

The solutions obtained by the considered low-level optimization problem are subopti-

mal, and it is demonstrated that the optimality gap is larger for starting elliptic orbits such

as GTO, sub-GTO, and super-GTO, compared to starting circular orbits in low-Earth orbits

(LEO)[9]. With the goal of reducing the optimality gap, low-thrust sequential optimization

sub-problems are considered, whose objective function has three components (two in the

case of planar transfers) given by Eq.(3.4) and Eq.(3.6) combined using a convex combina-

tion of weights. Considering the local objective function for an optimization sub-problem,

a parametric study is conducted in order to investigate the effect of these relative on the

orbit-raising transfer time using the above-mentioned dynamic model. A number of different

orbit-raising scenarios are used to illustrate this impact with numerical examples[21].

2.4.1 Planar Transfers

For planar transfer maneuvers, the solution of 100 orbit-raising problems for each

initial orbits by varying wh linearly between 0.1 and 0.99. This is because the selection of wh

completely describes the objective function given by Eq.(2.7) with whxy = 0 and we = 1−wh.

Example 1: GTO to GEO Planar Transfer

In this transfer type, GTO is taken as the initial orbit of the spacecraft with a perigee

altitude of 250 km. Naturally, the apogee altitude is 35786 km. Moreover, the initial mass

of the spacecraft is taken as 5000 kg. For this scenario, a number of orbit-raising transfer

problems are generated for linearly space choices of wh,k between 0.1 and 0.99. Figure 2.4

shows the variation of the transfer time with the considered values of wh. Among all transfers

considered, the trajectory with wh = 0.8282 was found to yield the minimum transfer time

of 107.94 sidereal days, a final mass of 4413.38 kg and a total of 168 revolutions. Compared

to the scenario when weights are equal (that is, wh = we = 0.50), the transfer time is 124.96

sidereal days, final mass is 4328.72 kg, and the transfer is completed over 228 revolutions.
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By significantly increasing the relative weighting for the angular momentum difference (high

wh), there is a substantial reduction in the transfer time of 13.65%.
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Figure 2.4: Variation of wh for GTO to GEO planar Transfer

Example 2: Sub-GTO to GEO Planar Transfer

In this transfer type, the initial orbit of the spacecraft is considered to be Sub-GTO.

The perigee altitude and apogee altitude for this particular orbit are taken as 250 km and

30000 km, respectively. Moreover, the spacecraft with initial mass of 5000 kg is taken for this

trasnfer. For this scenario as well, multiple orbit-raising problems are solved for linearly-

spaced vector wh varying between 0.1 and 0.99. Figure 2.5 depicts the variation of the

corresponding transfer time with respect to chosen values of wh for these transfers. Of those

computed trajectories, the one with wh = 0.8731 yields the minimum transfer time of 113.1

sidereal days, a final mass of 4387.24 kg after completing a total of 192 revolutions. On

comparing with the least transfer time result, an equal weighting of the individual objectives

(wh = we = 0.50) result in transfer time of 133.46 sidereal days, a final mass of 4288.98

kg, and a total of 282 revolutions. By a heavier weighting of wh, there is a considerable

reduction in transfer time by 15.25%.
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Figure 2.5: Variation of wh for Sub-GTO to GEO planar Transfer

Example 3: Super-GTO to GEO Planar Transfer

In this transfer type, the initial orbit of the spacecraft is considered to be Super-GTO.

The perigee altitude and apogee altitude for this particular orbit are taken as 250 km and

45000 km, respectively. Initial value of the mass of the spacecraft is taken to be 5000 kg, same

as in the previous transfers. For this scenario, a number of orbit-raising transfer trajectories

are computed for linearly spaced vector wh varying between 0.1 and 0.99. Figure 2.6 depicts

the variation of the corresponding transfer time with respect to chosen values of wh for these

transfers. Out of these computed low-thrust orbit-raising trajectories, the one corresponding

to wh = 0.8012 gives the least transfer time of 103.34 sidereal days, a final mass of 4434.96

kg and a total of 134 revolutions. Comparing to the solution for equal weighting of the two

components of the objective function (wh = we = 0.50) with the transfer time of 113.07

sidereal days, a final mass of 4386.57 kg and a total of 168 revolutions), it is found that there

is a reduction in transfer time for Super-GTO scenario by 8.6% by following a non-equal

weighting of the objective function components.
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Figure 2.6: Variation of wh for Super-GTO to GEO planar Transfer

2.4.2 Nonplanar Transfers

For nonplanar orbit-raising maneuvers, solution of 242 = 576 orbit-raising problems

for each initial orbits by varying wh and whxy linearly between 0.1 and 0.99. Choosing at

least two relative weights out of three are mandatory which describes the objective function

given by Eq.(2.5). Note that selection of wh and whxy automatically determines the third

relative weight we = 1− wh − whxy.

Example 4: GTO to GEO Nonplanar Transfer

In this case, the spacecraft initially to be in a perigee altitude of 250 km and an

apogee altitude of 35786 km with an inclination of 28.5 deg is considered. The initial mass

of the spacecraft is considered as 5000 kg, same as in the planar transfers. For the considered

nonplanar transfer scenario, 576 orbit-raising instances are solved, considering linearly spaced

values of wh and whxy varying between 0.1 and 0.99. Figure 2.7 illustrates the variation of

the corresponding transfer time with respect to chosen values of wh and whxy for these

transfers. Out of those trajectories, the one with wh = 0.4400 and whxy = 0.5257 gives the

least transfer time of 155.91 sidereal days, a final mass of 4134.28 kg and a total of 225

revolutions. Compared to the case of equal weighting (wh = 0.3333, whxy = 0.3333) that

yields a transfer time of 190.46 sidereal days, a final mass of 3933 kg and a total of 335
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revolutions, the unequal weighting of the objective function components yields a 18.14 %

reduction in transfer time.
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Figure 2.7: Variation of wh for GTO to GEO nonplanar Transfer

Example 5: Sub-GTO to GEO Nonplanar Transfer

In this case, the spacecraft initially to be in a perigee altitude of 250 km and an

apogee altitude of 30000 km with an inclination of 28.5 deg is considered. Similar to the

planar transfers, initial mass of the spacecraft to be 5000 kg is taken and 576 orbit-raising

problems are solved based on equally spaced values of wh and whxy varying between 0.1 and

0.99. Figure 2.8 depicts the variation of the corresponding transfer time with respect to

chosen values of wh and whxy for these transfers. Out of those trajectories, trajectory with

wh = 0.4400 and whxy = 0.5250 gives the least transfer time of 161.60 sidereal days, a final

mass of 4105.74 kg and a total of 265 revolutions. When compared to the solution yielded by

an equal weighting of the components of the objective function (wh = 0.3333, whxy = 0.3333,

transfer time of 197.24 sidereal days, final mass of 3897.84 kg and total of 394 revolutions), it

is found that unequal weighting scheme can lead to a reduction in transfer time by 18.07%.
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Figure 2.8: Variation of wh for Sub-GTO to GEO nonplanar Transfer

Example 6: Super-GTO to GEO Nonplanar Transfer
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Figure 2.9: Variation of wh for Super-GTO to GEO nonplanar Transfer

In this case,the spacecraft initially to be in a perigee altitude of 250 km and an apogee

altitude of 45000 km with an inclination of 28.5 deg, with the initial mass of the spacecraft

to be 5000 kg is considered. A number of orbit-raising problems are solved generated for

linearly spaced values of wh and whxy varying between 0.1 and 0.99, and Figure 2.9 depicts

the variation of the corresponding transfer time with respect to chosen values of wh and whxy

for these transfers. Out of those trajectories, trajectory with wh = 0.40 and whxy = 0.55

gives the minimum transfer time of 150.09 sidereal days, a final mass of 4166 kg and a total

of 193 revolutions as compared to wh = 0.3333 and whxy = 0.3333 with the transfer time of
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181.86 sidereal days, a final mass of 3978.87 kg and a total of 269 revolutions. By adjusting

wh and whxy, there is a reduction in transfer time for by 17.47%.

For each orbital transfer type, the computational time is observed in the order of

hours to generate minimum transfer time trajectory. Table 2.1 summarizes the numerical

results for all mission scenarios for planar and nonplanar low-thrust maneuvers.

Table 2.1: Summary of Parametric study results

Initial Orbit
Least Transfer Time
(sidereal days)

wh we whxy
Final Mass
(kg)

Planar Transfers
GTO (250 km x 35786 km altitude) 107.94 0.8282 0.1718 - 4413.38
Sub-GTO (250 km x 30000 km) 113.1 0.8731 0.1269 - 4387.24
Super-GTO (250 km x 45000 km) 103.34 0.8012 0.1988 - 4434.96
Nonplanar Transfers (i = 28.5 deg)

GTO (250 km x 35786 km) 155.91 0.4400 0.0343 0.5257 4134.28
Sub-GTO (250 km x 30000 km) 161.60 0.4400 0.035 0.5250 3897.84
Super-GTO (250 km x 45000 km) 150.09 0.40 0.05 0.55 4166
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CHAPTER 3

PROPOSED METHODOLOGY

In this chapter, the optimization scheme described above is formulated as the low-level

trajectory optimization for our orbit-raising problem and a methodology for incorporating a

machine learning algorithm is provided to facilitate the high-level decision-making of adaptive

choosing of objective function weights. To facilitate this formulation, a set of planning

states is introduced apart from the spacecraft state variables, and also outlines the dynamics

associated with the planning states apart from the spacecraft dynamic equations as described

in the previous chapter.

3.1 High-Level Planning Problem

To this end, an integer k ∈ I+ is introduced that represents the index of the revolution

that the spacecraft is undergoing at a given time. Note here that although the number of

revolutions is finite for a given orbit-raising problem, the total number of revolutions is not

known a priori and is obtained as a part of the solution.

At the high-level, the decision-making involves the selection of the weights wh,k, we,k

and whxy,k associated with the objective function. This decision-making problem is con-

sidered to be a discrete optimization process, where selections are made at each planning

horizon. Each selection is referred to as an action that determines the objective function

for the low-level trajectory optimization problem. To this end, a set of planning states is

defined and then an action is defined that transfers the planning problem from one state to

another. The set sk planning states is defined by the spacecraft orbit (defined by hk, ek and

inclination ik) at the beginning of the k-th revolution, along with the weights wh,k, we,k and

whxy,k. Without loss of generality, we will assume that we will make modifications to wh,k

and whxy,k. Therefore, for each planning step (k-th revolution), a set of feasible selections of

weights is defined for:
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Wk = {(wh,k, whxy,k), (wh,k + ∆wh, whxy,k), (wh,k −∆wh, whxy,k),

(wh,k, whxy,k + ∆whxy), (wh,k, whxy,k −∆whxy)},
(3.1)

where ∆wh and ∆whxy are user-defined changes in weights that can be considered in each

planning period.

Note here, for the special case of a planar transfer, the planning problem simplifies to the

consideration of a smaller number of variables. Specifically, the variables ik and whxy,k are

zero. Furthermore, the set of feasible selections is reduced to the following:

Wp,k = {wh,k, wh,k + ∆wh, wh,k −∆wh}. (3.2)

Now, action ak is defined as a mapping from the current weights wh,k and whxy,k to the

new weights wh,k+1 and whxy,k+1 to be used for low-level optimization problem. For planar

and nonplanar transfers, ak is described as

ak :


(wh,k, whxy,k) 7→ (wh,k+1, whxy,k+1), Nonplanar transfer

wh,k 7→ wh,k+1, Planar transfer

(3.3)

To complete the description of the decision-making problem associated with the high-

level planning of the orbit-raising trajectory, each action is considered to have a corresponding

cost (in the case of minimization problem) or reward (in the case of a maximization problem).

In the context of the current work, the reward function is considered to be the amount of

transfer time associated with the orbit-raising maneuver obtained due to the change of the

objective function weights. This reward function at the beginning of the k-th planning step is

denoted by Q(sk, ak). The objective of the high-level planning problem is to choose the action

that leads to the largest reward, or equivalently the smallest transfer time for the orbit-raising

maneuver. This strategy of determining the next planning state of the spacecraft (sk+1) by

employing the best/optimal action based on the known current planning state (sk) is known
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as the optimal policy that is denoted by π∗(sk,ak). The optimal action for a particular

planning state is defined as an action which gives the minimum transfer to reach the target

orbit GEO.

3.2 Low-level Trajectory Optimization

The objective function for low-level optimization problem is same as Eq.(2.5) which

is to be minimized during the kth revolution is written as:

Jk = min[wh,k(hGEO − hk+1)
2 + we,k(e

2
x,k+1 + e2y,k+1) + whxy,k(h

2
x,k+1 + h2y,k+1)], (3.4)

where the subscripts k and k + 1 indicate the variables at the beginning and end of k-th

revolution respectively. Note that the end of the k-th revolution marks the beginning of the

(k + 1)-th revolution. In addition, wh,k, we,k and whxy,k represent the relative weights for

the three individual components of the objective function as described above. Note that,

the sum of the weights equals 1, that is,

wh,k + we,k + whxy,k = 1. (3.5)

Similarly the objective function for planar case in Eq.(2.7) is written as:

Jpk = min
[
wh,k(hGEO − hk+1)

2 + we,k(e
2
x,k+1 + e2y,k+1)

]
. (3.6)

Furthermore, low-level optimization is executed with the algorithm represented by

Figure 2.3. The optimization methodology approximates the trajectory over a revolution by

a conic section; hence, the transfer time over each planning horizon is given by:

Rk =
h3k+1

µ2

√
1

1− e2x,k+1 − e2y,k+1

, (3.7)
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which will be treated as the reward corresponding to the kth revolution, in the context

of applying reinforcement learning to the orbit-raising problem. Note that the constraint

Eq. 3.5 implies that only two of the three weights need to be selected.

The terminal conditions for the low-level optimization problem in the Eq.(2.8), Eq.(2.9)

and Eq.(2.10) are then updated as

0 ≤
√
e2x,k+1 + e2y,k+1 ≤ etol, (3.8)

aGEO − atol ≤
h2k+1

µ(1− e2x,k+1 − e2y,k+1)
≤ aGEO + atol (3.9)

0 ≤

√
h2X,k+1 + h2Y,k+1

h
≤ sin itol (3.10)

3.3 Q-Learning for Low-thrust Orbit Raising Problem

In Reinforcement learning (RL), the agent (spacecraft) first takes an action ak from

an initial state sk to reach sk+1 and obtain reward Rk or the feedback to the agent’s actions

from the environment that eventually leads it to the terminal state. This one series of states,

actions, rewards that ends at the terminal state is called an episode. As its experience with

the environment increases, the learning agent may predict with more confidence which actions

will tend to lead to preferred results. In the literature, the future rewards are discounted by

a factor γ per time-step giving more preference to immediate rewards rather than long-term

rewards. The sum of the discounted rewards from state sk is defined as in Ref. [39].

G(sk) = Rk + γRk+1 + .... =
Nr∑
k=1

γk−1Rk, (3.11)

where γ is the discount factor considered to be 1 for our planning problem since the agent

will evaluate each of its actions based on the sum total of all of its future rewards, Rk

is the reward value for the kth planning step given by Eq.(3.7) and Nr is the number of

planning steps/revolutions determined by the low-level planning problem. In the Q-Learning
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algorithm, Q(sk, ak) is the measure of the overall expected reward when the agent is at

planning state sk and performs ak. This is used to approximate the Q-value based on a

state. This Q-value is written as:

Q(sk, ak) = E[G|sk,ak, γ = 1] = [−R(sk,ak) + γmax
ak+1

(−Q(sk+1,ak+1))|sk,ak], (3.12)

where R(sk,ak) is the immediate reward when agent moves from state sk to sk+1 and

Q(sk,ak) is the highest Q-value given state sk. In order to learn how to move and make

decisions within the environment, the agent has to be trained. The agent explores every

possible state-action pairs for all the states. A list of Q-values for all possible state-action

pairs is constructed and these estimates are stored in a table which is known as the Q-table.

These values keep on updating after every episode until the agent learns to act optimally

in that environment, that is when the agent makes decisions such that it maximizes the

expected future rewards (minimized transfer time). Trajectory of low-thrust orbit raising

for the Q-learning process is illustrated by Figure 3.1.

Figure 3.1: Graphic representation of Q-learning for orbit-raising trajectory

An important point to note here is the lack of knowledge of this reward function;

hence, in the next section, a methodology is presented using neural network-based estimation

of the reward function in order to facilitate the application of a reinforcement learning

technique.
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3.4 Deep Q-Learning

The environment for low-thrust planning problem is not defined explicitly in the

reinforcement learning literature and it is impossible to access all the planning states and

possible and create Q-table. It becomes challenging to get optimal state-action values for

this type of complex problem with high dimensional states. To tackle this high dimensional

problem, Q-table is replaced by a neural network which is known as a function approximator

which is denoted by Q̂(s,a;θ). Here, θ is defined as the network parameter which comprises

of trainable weights and biases of the neural network, thus eliminating the need of learning

rate. The performance of the neural network is calculated by the loss function given by

LF (sk,ak) =
[
Q̂ (sk,ak;θ)−Q(sk,ak)

]2
, (3.13)

where Q̂ (sk,ak;θ) is the predicted value of transfer time required to reach GEO from plan-

ning state sk by the neural network and Q(sk,ak) is the actual transfer time required to

reach GEO from planning state sk.

The implementation of deep neural networks with Q-learning is known as Deep Q-

Learning. Only the planning states are taken as the input to the network and the target are

the Q-values or the transfer time. Then, the neural network is trained with those input and

target values to create the model of the dynamic model used for low-level planning problem of

minimizing the objective function which is a convex combination of components. Commonly,

neural networks are used for non-linear function approximation in regression or classification

tasks. A typical neural network consists of multiple layers. These consist of an input layer

and an output layer with one or more hidden layers between them. Neurons present in the

hidden layer process incoming signals from the input neurons and then transmits a resulting

signal to its subsequent neurons to the next layer. Artificial neural network with three inputs

and a hidden layer and one output can be illustrated by Figure 3.1.
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Figure 3.2: An artificial neural network

The optimized output of the neural network is:

Q̂?(sk,ak) = f2(W2(f1(W1I +B1)) +B2), (3.14)

where W1 ∈ R3×4 which represents the weight matrix W1 having row vector as the number

of input and column vector as the number of hidden neuron whereas W2 ∈ R4×1 which

represents the weight matrix W2 having row vector as the number of hidden neurons and

column vector as number of output neurons, I ∈ R3 where I represents the input vector,

B1 ∈ R1×4 and B2 ∈ R1×1 which represents the bias matrices for hidden layer and output

layer respectively which are used to adjust the output along with the weighted sum of the

inputs to the neuron. The dimensions of the weight matrix of a particular layer are such that

it can take the input of that layer and transform it into the size of the next layer. f1 and

f2 are defined as the activation functions for the hidden layer and output layer respectively,

which are used to add nonlinearities to the neural network in an element-wise manner. The

most popular activation function options include sigmoid, tanh, rectified linear unit (ReLu).

A neural network can learn from data so it can be trained to recognize patterns, classify

data, and forecast future events. The behavior of the neural network is defined by the

weights or by the strength of individual neuron is connected which each other in each layer.

These weights are called the synaptic weights. These weights are adapted by the algorithm

used for learning in a way to minimize the performance function that maps the behaviour
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between the input and output. This process is known as the training of the neural network.

Before analyzing any typical data, it is normally divided into three data sets. These include

Training data set, Validation data set and Testing data set. The training data set is used to

train the neural network, whereas the validation data set is mainly used to avoid overfitting.

If the training data set performance is more than the validation set, then the situation is

known as overfitting. This data is used to refine the neural network. The testing data set

used only for testing the final solution in order to confirm the actual predictive power of the

network. The training is stopped when either of the following conditions is satisfied:

i) Validation data set error (performance) reaches minimum

ii) Convergence of the performance function, or

iii) Number of epochs (iterations) reaches maximum.

For the network to learn, various training algorithms are used to model these weights and

biases into generating more accurate output. The aim of these algorithms are to minimize

the objective function with respect to the weights and biases within the network. In this

study, Levenberg-Marquardt optimizer is used for training the network due to its faster

convergence rate and its robustness[60, 61], which is available in the Neural Network Toolbox

in MATLAB. Training of these neural networks is executed on a desktop computer that runs

the Windows 7 Enterprise 64-bit operating system on an Intel Core i5-4570 CPU 3.2 GHz

with 8 GB of RAM.

3.5 Data Used for Neural Network

Low-thrust orbit-raising trajectories are optimized by the dynamic model in the ref-

erence 10 for various transfers from different initial orbits to geostationary equatorial orbit

(GEO). These initial orbits include geostationary transfer orbit (GTO), Sub-GTO, Super-

GTO. For data generation, 100 orbit-raising transfer problems are generated for linearly

spaced choices of wh,k between 0.1 and 0.99 for all the orbit-raising scenarios. To train the

neural network for planar transfer, input vector IP whose components are magnitude of
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angular momentum (h), magnitude of eccentricity vector (e), wh and we, and therefore, is

represented as

IP =

[
hk+1, ek+1, wh,k+1, we,k+1

]
(3.15)

whereas the output is taken as the time required by the spacecraft to transfer from the current

planning state sk to reach GEO after every revolution which is represented by Eq.(3.14).

For nonplanar transfer, 24 orbit-raising transfer problems are generated for linearly

spaced choices of wh,k and whxy,k between 0.1 and 0.99 for all the orbit-raising scenarios. Here,

input vector INP whose components are angular momentum magnitude (h), inclination angle

(i = arcsin(

√
h2x+h

2
y

h
)), magnitude of eccentricity vector (e), wh, whxy and we and therefore

represented as

INP =

[
hk+1, ik+1, ek+1, wh,k+1, whxy,k+1, we,k+1

]
(3.16)

whereas output, similar to planar case, is the time required by the spacecraft to trans-

fer from the current planning state to reach GEO after every revolution which is represented

by Eq.(3.14).

For both planar and nonplanar transfers, the number of trainable data points gener-

ated are given by Table 3.1.

Table 3.1: Number of Trainable Data points

Initial Orbit Data points
Planar Transfers
GTO to GEO 21708
Sub-GTO to GEO 26804
Super-GTO to GEO 16183
Nonplanar Transfers (i =28.5 deg)

GTO to GEO 75459
Sub-GTO to GEO 88653
Super-GTO to GEO 59947

3.6 NN selection

The main parameter considered to train the neural network in this work is the neurons

count present in the only hidden layer. Input data to the neural network is divided randomly
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into the training set, validation set and testing set in the percentages 70, 15 and 15. That

means 70 percent of the input data is considered for training, rest 30 percent of the data

is divided equally for validation and testing. Furthermore, the training is done by LM

algorithm with random initialized synaptic weights of the input neurons. Activation function

for the hidden layer is taken as tanh (f1) and for output layer as linear (f2) which are the

default settings for the activation function in the LM training in the MATLAB toolbox. The

performance of the trained network is evaluated by the mean squared error (MSE) which is

given by:

MSE =
1

n

n∑
i=1

(ẑi − zi)2 (3.17)

where n is the number of data points or samples. This MSE is analogous to the loss function

for the deep neural network which is given by Eq.(3.13) where (ẑi) is the predicted value at

ith data point which corresponds to Q(sk,ak; θ) and (zi) is the Target or observed values

at the ith data point corresponds to Q(sk,ak). Furthermore, accuracy is then calculated

which evaluates the percentage of correct predictions by the trained neural network that can

be easily derived from: Accuracy = 1−MSE.

The neural network which gives least MSE with less number of hidden neurons is

selected for that particular scenario.

Figure 3.3: Neural Network Architecture for Planar and Nonplanar GTO transfer
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3.6.1 GTO transfer

Data for GTO transfer is generated considering perigee altitude of 250 km and the

apogee altitude of 35786 km. Initial value of the mass of the spacecraft is considered to be

5000 kg. For planar transfer, 4 inputs and 1 output are taken for training, as explained in the

earlier section. Different neural networks are trained with different number of hidden layer

neurons on a trial and error basis which includes 10, 50, 100, 120, 130, 150, 200 and 380. The

number of training iterations are taken as 5000. Moreover, the training is stopped by the LM

algorithm when one of the conditions is satisfied, which in this case, is network performance

on the validation vectors fails to improve or remains the same for max fail (default value =

6) epochs in a row. It is found that the network with 150 neurons in the hidden layer gives

the least MSE of 0.0025 with an accuracy of 99.75%.

For nonplanar transfer, data is generated with similar perigee and apogee altitude as

in the planar case but with an inclination angle of 28.5 degrees. Different NNs are trained

with multiple values of hidden neurons. Nonplanar NN selection is based on the training

with the least number of hidden neurons and is stopped when the performance of the NN

has reached the same as the planar neural network. It is found that NN is trained with

150 hidden neurons is selected, 6 inputs and 1 output with the stopping condition set as

minimum MSE same as the planar case which is 0.25%. For both GTO planar transfer and

nonplanar transfer, it took approximately 1 hr and 3 hrs, respectively to train the neural

networks. Once trained, neural networks for both planar transfer and nonplanar transfer are

evaluated with the simulations and whose results are compared with Reference [9].

3.6.2 Sub-GTO Transfer

Similarly for Sub-GTO transfer, data for is generated considering perigee altitude

and apogee altitude as 250 km and 30000 km, respectively. Initial value of the mass of the

spacecraft is taken out to be 5000 kg. For planar transfer, 4 inputs and 1 output are taken

for training. Different neural networks are trained with different number of hidden layer

neurons on a trial and error basis. The number of training iterations are taken as 5000.
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Figure 3.4: Deep Q-Learning Architecture for Planar and Nonplanar GTO transfer

Training is stopped by the LM algorithm when one of the conditions is satisfied, which in

this case, is network performance on the validation vectors fails to improve or remains the

same for max fail (default value = 6) epochs in a row. It is found that the network with 150

neurons in the hidden layer gives the least MSE of 0.0047 with an accuracy of 99.53%.

For nonplanar transfer, data is generated with similar perigee and apogee altitude as

in the planar case but with an inclination angle of 28.5 degrees. Different NNs are trained

with multiple values of hidden neurons. Nonplanar NN selection is based on the training

with the least number of hidden neurons and is stopped when the performance of the NN

has reached same as the planar neural network. It is found that the neural network with

120 hidden neurons is selected, 6 inputs and 1 output with the stopping condition set as

minimum MSE same as the planar case which is 0.47%. For both Sub-GTO planar transfer

and nonplanar transfer, it took approximately 1.5 hrs and 6 hrs, respectively to train the

neural networks. After training the networks for both planar and nonplanar transfer, they

are evaluated by integrating it with the dynamic model.

3.6.3 Super-GTO Transfer

For Super-GTO transfer, data for is generated considering perigee altitude of 250 km

and the apogee altitude of 45000 km. Initial value of the mass of the spacecraft is considered

to be 5000 kg. Likewise for planar transfer, 4 inputs and 1 output are taken for training.

Different neural networks are trained with different number of hidden layer neurons on a

trial and error basis. The number of training iterations are taken as 5000 which is same for
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GTO case and Sub-GTO case. Training is stopped by the LM algorithm when one of the

conditions is satisfied. It is found that the network with 130 neurons in the hidden layer

gives the least MSE of 0.0091 with an accuracy of 99.09%.

For nonplanar transfer, data is generated with similar perigee and apogee altitude as

in the planar case but with an inclination angle of 28.5 degrees. Different NNs are trained

with multiple values of hidden neurons. Nonplanar NN selection is based on the training

with the least number of hidden neurons and is stopped when the performance of the NN

has reached same as the planar neural network. It is found that the neural network with

100 hidden neurons is selected, 6 inputs and 1 output with the stopping condition set as

minimum MSE same as the planar case which is 0.91%. For both Super-GTO planar transfer

and nonplanar transfer, it took approximately 0.5 hrs and 3 hrs, respectively to train the

neural networks. After training the networks for both planar and nonplanar transfer, they

are evaluated by integrating it with the dynamic model.

Table 3.2: Neural networks Training Results Summary

Initial Orbit Input-Hidden-Output
Activation func

of hidden layer

Activation func

of output layer

Training time

(hours)
MSE

Planar Transfers

GTO 4-150-1 tanh linear 1 0.0025

Sub-GTO 4-150-1 tanh linear 1.5 0.0047

Super-GTO 4-130-1 tanh linear 0.5 0.0091

Nonplanar Transfers

GTO 6-150-1 tanh linear 3 0.0025

Sub-GTO 6-120-1 tanh linear 6 0.0047

Super-GTO 6-100-1 tanh linear 3 0.0091

State variables and Planning states (both planar and nonplanar) are initialized for

low-level trajectory optimization scheme and high-level planning problem, respectively. Given

the current planning state, Q-values/transfer time to reach GEO are predicted by the trained

planar and nonplanar neural networks for all the considered actions/trajectories from that

planning state. The action corresponding to the maximum Q-value (minimum transfer time
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to reach GEO) is selected and executed. Furthermore, the reward value or the transfer time

by the spacecraft to reach the state variables for the next subproblem is calculated for that

action which is given as a function of state variables computed at the end of a revolution by

low-level optimization scheme as given by Eq.(3.7). These computed state variables become

the initial state variables and form the planning state for the next optimization subproblem.

This sequence of selecting an action by the NN that gives the minimum transfer time to

reach GEO from a planning state is continued until the spacecraft reaches the GEO. The

working of the planning algorithm is depicted by flowchart in Figure 3.5.

Figure 3.5: Planning Algorithm flow chart
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3.7 Generalized Neural Network

Instead of using different NNs for different mission scenarios, a single generalized

neural network is introduced for all the considered scenarios. This generalized neural network

is trained on the data for all the equatorial orbits used earlier.

3.7.1 Data for Single NN

As mentioned, data for this single NN is generated by combining the data for all the

equatorial orbits namely GTO, Sub-GTO and Super-GTO, for both planar and nonplanar

transfers. For both planar and nonplanar transfers, six planning variables are taken in the

input vector I 7→ sk which is represented as

I =

[
hk+1, ik+1, ek+1, wh,k+1, whxy,k+1, we,k+1

]
(3.18)

where values for ik+1 and whxy,k+1 are taken as zero for planar transfers. The output for the

generalized NN is considered same as before, that is, transfer time required to reach GEO

from the current planning state sk. The total number of trainable data points is taken as

288,754.

3.7.2 Generalized NN selection

Like before, the only parameter considered for training the neural network is the

hidden neurons count. NN is trained in the similar fashion, that is, by changing the number

of hidden neurons of the network until the network which provides least MSE given by

Eq.(3.17) with less number of hidden neurons is found.

Different neural networks are trained with different number of hidden layer neurons

on a trial and error basis. The number of training iterations are taken as 5000. Training

is stopped by the LM algorithm when one of the conditions is satisfied, which in this case,

is network performance on the validation vectors fails to improve or remains the same for

max fail (default value = 6) epochs in a row. It is found that the network with 170 neurons

in the hidden layer gives the least MSE of 0.1561 with an accuracy of 84.39%. It took
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approximately 20 hrs to train the generalized neural network. Once trained, this single

neural network is used for optimizing the the relative weights of the objective function in

Eq.(3.4) and Eq.(3.6) like the networks used in the previous section. This generalized NN

is integrated with low-level optimization scheme whose working is shown by the flowchart in

Figure 3.6.

Figure 3.6: Planning Algorithm flow chart for Generalized NN
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CHAPTER 4

ORBIT-RAISING PROBLEM SIMULATION RESULTS

In this chapter, numerical results for orbit-raising maneuvers starting from equatorial

orbits (GTO, Sub-GTO, and Super-GTO) are demonstrated. For low-level planning prob-

lem, an engine with four BPT-4000 Hall thrusters is considered for low-thrust orbit-raising

trajectory generation for all mission scenarios. The choice of selecting BPT-4000 thruster

is due to the fact that it can be used for both small and large class of telecommunication

satellites.

4.1 Machine Learning Results

For all examples in high-level planning problem, neural networks for each scenario are

created and trained with the data generated using the dynamic model described by low-level

trajectory optimization problem. As explained in the previous chapters, the data includes

the planning variables and the transfer time required to reach GEO corresponding to those

planning variables. Neural networks are trained using Levenberg-Marquardt optimizer which

is available in the Neural Network Toolbox in MATLAB.

4.1.1 Planar Transfers

First, planar transfer scenarios having equatorial orbits as initial orbits with no in-

clination are considered. The objective function for the planar transfer is given by Eq.(3.6).

Initially, wh,k and we,k values are taken as 0.75 and 0.25, respectively. All four thrusters

together generates a thrust value equal to 1.16 N. Consequently, they provide a specific im-

pulse of 1788 s. For all cases, the initial guess for control input α is taken as zero. Stopping

criteria for high-level planning algorithm is defined when the terminal conditions for low-level

optimization problem given by Eq.(3.8), Eq.(3.9) and Eq.(3.10) are met where etol = 0.01

and atol = 0.01.
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Example 7: GTO to GEO Planar Transfer

First, for GTO planar transfer wh,k is initialized as 0.75. Then, three actions/tra-

jectories given by Eq.(3.2) are considered. Q-values or the time to reach GEO from all the

planning states are estimated by the trained neural network for all the three trajectories and

the one trajectory with minimum transfer time [max(−Q(sk,ak))] is selected for that sub-

problem and the corresponding planning state which is obtained from the dynamic model

becomes the initial planning state for the next sub-problem. Then the transfer time for that

sub-problem is calculated by Eq.(3.7) with the obtained planning state.

Likewise, the network selects the planning state for every revolution or sub-problem

which gives minimum transfer time to GEO from the current planning state. This goes until

the terminal conditions defined by low-level planning problem are satisfied. The proposed

machine learning algorithm is tested for different values of user-defined step-size (∆wh) which

remains constant for each planning period. Trajectory with initial value of wh,k = 0.75 and

∆wh = 0.001 gives the transfer time of 109.98 sidereal days with 174 revolutions is less

as compared with initial and constant value of wh,k = 0.75 for every sub-problem with a

transfer time of 111.74 sidereal days with 185 revolutions given in [9]. Simulation results for

this planar case are illustrated by Figure 4.1.
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Figure 4.1: Variation of wh and we for every revolution for GTO Planar case
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Example 8: Sub-GTO to GEO Planar Transfer

Similarly, for Sub-GTO planar transfer wh,k is initialized as 0.75. Then, three action-

s/trajectories are considered that are given by Eq.(3.2). Q-values or the transfer time to

reach GEO from all the planning states are estimated by the trained neural network for all

the three trajectories and the one trajectory with minimum transfer time [max(−Q(sk,ak))]

is selected for that sub-problem and the corresponding planning state which is obtained from

the dynamic model becomes the initial planning state for the next sub-problem. Then the

transfer time for that sub-problem is calculated by Eq.(3.7) with the obtained planning state.

Likewise, the network selects the planning state for every revolution or sub-problem

which gives minimum transfer time to GEO from the current planning state. This goes until

the terminal conditions defined by low-level planning problem are satisfied. The proposed

machine learning algorithm is tested for different values of user-defined step-size (∆wh) which

remains constant for each planning period. Trajectory with initial value of wh,k = 0.75 and

∆wh = 0.008 gives the transfer time of 115.10 sidereal days with 204 revolutions. When

compared with initial and constant value of wh,k = 0.75 for every sub-problem, transfer time

came out to be 118.79 sidereal days with 227 revolutions as shown in [9]. Simulation results

for this planar case are illustrated by Figure 4.2.
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Figure 4.2: Variation of wh and we for every revolution for Sub-GTO Planar case

41



Example 9: Super-GTO to GEO Planar Transfer

Similarly, for Super-GTO planar transfer wh,k is initialized as 0.75. Then, three

actions/trajectories given by Eq.(3.2) are considered. Q-values or the transfer time to reach

GEO from all the planning states are estimated by the trained neural network for all the

three trajectories and the one trajectory with minimum transfer time [max(−Q(sk,ak))] is

selected for that sub-problem and the corresponding planning state which is obtained from

the dynamic model becomes the initial planning state for the next sub-problem. Then the

transfer time for that sub-problem is calculated by Eq.(3.7) with the obtained planning state.

Likewise, the network selects the planning state for every revolution or sub-problem

which gives minimum transfer time to GEO from the current planning state. This goes until

the terminal conditions defined by low-level planning problem are satisfied. The proposed

machine learning algorithm is tested for different values of user-defined step-size (∆wh) which

remains constant for each planning period. Trajectory with initial value of wh,k = 0.75 and

∆wh = 0.001 gives the transfer time of 103.70 sidereal days with 136 revolutions is less as

compared with initial and constant value of wh,k = 0.75 for every sub-problem with transfer

time of 104.02 sidereal days with 140 revolutions given in [9]. Figure 4.2 represents results

for the Super-GTO planar case.
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Figure 4.3: Variation of wh and we for every revolution for Super-GTO Planar case
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4.1.2 Nonplanar Transfers

For nonplanar transfers, 28.5 degrees is taken as the initial value for inclination angle.

The objective function for the nonplanar cases is given by Eq.(3.4) where initial values of

wh,k, we,k and whxy,k are set as 0.5, 0.1 and 0.4, respectively. The engine is composed with

four BPT-4000 thrusters. The generated thrust has a value of 1.16 N, similar to the planar

case. Consequently, the specific impulse 1786 s is provided to the spacecraft. Stopping

conditions for high-level planning algorithm are defined when the terminal conditions for

low-level optimization problem are met which are etol = 0.01, itol = 0.01 and atol = 0.01.

Example 10: GTO to GEO Nonplanar Transfer
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Figure 4.4: Variation of relative weight for every revolution for GTO Nonplanar case

For GTO nonplanar transfer, initial values of wh,k and whxy,k are taken as 0.5 and 0.4

respectively. Then, five actions/trajectories given by Eq.(3.1) are considered. Q-values or the

transfer time to reach GEO from states are estimated by NN for all the five trajectories and

the one trajectory with minimum transfer time [max(−Q(sk,ak))] is selected for that sub-
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problem and the corresponding planning state which is obtained from the dynamic model

becomes the initial planning state for the next sub-problem. The transfer time for that

sub-problem is then calculated by Eq.(3.7).

The network keeps on selecting the planning state for every revolution or sub-problem

which gives minimum transfer time to GEO from the current planning state until the terminal

conditions defined by the low-level planning problem are satisfied. The proposed machine

learning algorithm is tested for different values of user-defined step-sizes (∆wh and ∆whxy)

which remain constant for each planning period. Trajectory with initial value of wh,k = 0.5

and whxy,k = 0.4 with ∆wh = 0.001 and ∆whxy = 0.001 gives the transfer time of 158.95

sidereal days with 226 revolutions is less as compared with initial and constant value of

wh = 0.5 and whxy,k = 0.4 for every sub-problem with transfer time of 167.72 sidereal days

with 255 revolutions. Simulation results for this nonplanar case is illustrated by Figure 4.4.

There is a jump in the value of we,k at the end for the nonplanar case. This is because

the maneuver becomes planar for that sub-problem and value of whxy,k becomes zero. This

means there is a switching of NNs from nonplanar NN to planar NN for which the values of

wh,k is selected by the trained planar transfer neural network giving corresponding relative

weight we,k.
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Figure 4.5: Values of wh vs we for Nonplanar GTO Transfer
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Example 11: Sub-GTO to GEO Nonplanar Transfer

For Sub-GTO nonplanar transfer, initial values of wh,k and whxy,k are taken as 0.5 and

0.4 respectively. Then, five actions/trajectories given by Eq.(3.1) are considered. Q-values or

the transfer time to reach GEO from states are estimated by NN for all the five trajectories

and the one trajectory with minimum transfer time [max(−Q(sk,ak))] is selected for that

sub-problem and the corresponding planning state which is obtained from the dynamic model

becomes the initial planning state for the next sub-problem. The transfer time for that sub-

problem is then calculated by Eq.(3.7).

The network keeps on selecting the planning state for every revolution or sub-problem

which gives minimum transfer time to GEO from the current planning state until the terminal

conditions defined by the low-level planning problem are satisfied. The proposed machine

learning algorithm is tested for different values of user-defined step-sizes (∆wh and ∆whxy)

which remain constant for each planning period. Trajectory with initial value of wh,k = 0.5

and whxy,k = 0.4 with ∆wh = 0.004 and ∆whxy = 0.004 gives the transfer time of 170.09

sidereal days with 284 revolutions is less as compared with initial and constant value of

wh,k = 0.5 and whxy,k = 0.4 for every sub-problem with transfer time of 173.28 sidereal days

with 297 revolutions. Simulation results for this nonplanar case are illustrated by Figure 4.6.
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Figure 4.6: Variation of relative weights for every revolution for Sub-GTO Nonplanar case
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Figure 4.7: Values of wh vs we for Nonplanar Sub-GTO Transfer

Example 12: Super-GTO to GEO Nonplanar Transfer

For Super-GTO nonplanar transfer, initial values of wh and whxy are taken as 0.5 and

0.4 respectively. Then, five actions/trajectories given by Eq.(3.1) are considered. Q-values or

46



the transfer time to reach GEO from states are estimated by NN for all the five trajectories

and the one trajectory with minimum transfer time [max(−Q(sk,ak))] is selected for that

sub-problem and the corresponding planning state which is obtained from the dynamic model

becomes the initial planning state for the next sub-problem. The transfer time for that sub-

problem is then calculated by Eq.(3.7).

The network keeps on selecting the planning state for every revolution or sub-problem

which gives minimum transfer time to GEO from the current planning state until the terminal

conditions defined by the low-level planning problem are satisfied. The proposed machine

learning algorithm is tested for different values of user-defined step-sizes (∆wh and ∆whxy)

which remain constant for each planning period. Trajectory with initial value of wh,k = 0.5

and whxy,k = 0.4 with ∆wh = 0.009 and ∆whxy = 0.009 gives the transfer time of 153.92

sidereal days with 194 revolutions is less as compared with initial and constant value of

wh,k = 0.5 and whxy,k = 0.4 for every sub-problem with transfer time of 158.16 sidereal days

with 205 revolutions. Figure 4.9 represents the simulation results for Super-GTO nonplanar

transfer.
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Figure 4.8: Values of wh vs we for Nonplanar Super-GTO Transfer
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Figure 4.9: Variation of relative weights for every revolution for Super-GTO Nonplanar case

4.2 Single generalized NN Results

In this section, the results for high-level planning problem using a single neural net-

work is discussed. For all low-thrust maneuvers, initial values of wh,k, we,k and whxy,k in

the objective function Eq.(3.4) and Eq.(3.6) are taken same as before, that is, 0.75, 0.25

and 0 respectively for planar transfer and 0.5, 0.1 and 0.4 for nonplanar transfers. Stopping

criteria for high-level planning algorithm with single neural network remains the same which

is defined when the terminal conditions for low-level optimization problem given by Eq.(3.8),

Eq.(3.9) and Eq.(3.10) are met where etol = 0.01, itol = 0.01 and atol = 0.01.

4.2.1 Planar Transfers

Example 13: GTO to GEO Planar Transfer

The working of this single NN is same as the neural network trained specifically for

GTO to GEO planar maneuver. First, for GTO planar transfer wh,k is initialized as 0.75.

Then, three actions/trajectories given by Eq.(3.2) are considered. Q-values or the transfer
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time to reach GEO from all the planning states are estimated by the trained single neural

network for all the three trajectories and the one trajectory with minimum transfer time

[max(−Q(sk,ak))] is selected for that sub-problem and the corresponding planning state

which is obtained from the dynamic model becomes the initial planning state for the next

sub-problem. Then the transfer time for that sub-problem is calculated by Eq.(3.7) with the

obtained planning state.

Likewise, the network selects the planning state for every revolution or sub-problem

which gives minimum transfer time to GEO from the current planning state. This goes until

the terminal conditions defined by low-level planning problem are satisfied. The proposed

machine learning algorithm is tested for different values of user-defined step-size (∆wh) which

remains constant for each planning period. Trajectory with an initial value of wh,k = 0.75

and ∆wh = 0.004 gives the transfer time of 108.79 sidereal days with 170 revolutions is less

as compared with the initial and constant value of wh,k = 0.75 for every sub-problem with

a transfer time of 111.74 sidereal days with 185 revolutions given in [9]. Simulation results

for this planar case example are illustrated by Figure 4.10.
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Figure 4.10: Generalized neural network results for GTO Planar case

Example 14: Sub-GTO to GEO Planar Transfer

Similarly, for Sub-GTO planar transfer wh,k is initialized as 0.75. Then, three action-

s/trajectories given by Eq.(3.2) are considered by the generalized network. Q-values or the

transfer time to reach GEO from all the planning states are estimated by the trained single

49



neural network for all the three trajectories and the one trajectory with minimum transfer

time [max(−Q(sk,ak))] is selected for that sub-problem and the corresponding planning

state which is obtained from the dynamic model becomes the initial planning state for the

next sub-problem. Then the transfer time for that sub-problem is calculated by Eq.(3.7)

with the obtained planning state.

Likewise, the network selects the planning state for every revolution or sub-problem

which gives minimum transfer time to GEO from the current planning state. This goes until

the terminal conditions defined by low-level planning problem are satisfied. The proposed

machine learning algorithm is tested for different values of user-defined step-size (∆wh) which

remains constant for each planning period. Trajectory with an initial value of wh,k = 0.75

and ∆wh = 0.003 gives the transfer time of 114.13 sidereal days with 202 revolutions. When

compared with the initial and constant value of wh,k = 0.75 for every sub-problem, transfer

time came out to be 118.79 sidereal days with 227 revolutions as shown in [9]. Simulation

results for this planar case are illustrated by Figure 4.11.
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Figure 4.11: Generalized neural network results for Sub-GTO Planar case

Example 15: Super-GTO to GEO Planar Transfer

Similarly, for Super-GTO planar transfer wh,k is initialized as 0.75. Then, three

actions/trajectories given by Eq.(3.2) are considered. Q-values or the transfer time to reach

GEO from all the planning states are estimated by the trained single neural network for all

the three trajectories and the one trajectory with minimum transfer time [max(−Q(sk,ak))]
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is selected for that sub-problem and the corresponding planning state which is obtained from

the dynamic model becomes the initial planning state for the next sub-problem. Then the

transfer time for that sub-problem is calculated by Eq.(3.7) with the obtained planning state.

Likewise, the network selects the planning state for every revolution or sub-problem

which gives minimum transfer time to GEO from the current planning state. This goes until

the terminal conditions defined by low-level planning problem are satisfied. The proposed

machine learning algorithm is tested for different values of user-defined step-size (∆wh) which

remains constant for each planning period. Trajectory with an initial value of wh,k = 0.75

and ∆wh = 0.001 gives the transfer time of 103.34 sidereal days with 137 revolutions is less

as compared with the initial and constant value of wh,k = 0.75 for every sub-problem with

transfer time of 104.02 sidereal days with 140 revolutions given in [9]. Figure 4.12 represents

results for the Super-GTO planar case.
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Figure 4.12: Generalized neural network results for Super-GTO Planar case

4.2.2 Nonplanar Transfers

Example 16: GTO to GEO Nonplanar Transfer

For GTO nonplanar transfer, initial values of wh,k and whxy,k are taken as 0.5 and 0.4

respectively. Then, five actions/trajectories given by Eq.(3.1) are considered. Q-values or

the transfer time to reach GEO from states are estimated by the generalized NN for all the

five trajectories and the one trajectory with minimum transfer time [max(−Q(sk,ak))] is

selected for that sub-problem and the corresponding planning state which is obtained from
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Figure 4.13: Generalized neural network results for GTO Nonplanar case

the dynamic model becomes the initial planning state for the next sub-problem. The transfer

time for that sub-problem is then calculated by Eq.(3.7).

The network keeps on selecting the planning state for every revolution or sub-problem

which gives minimum transfer time to GEO from the current planning state until the terminal

conditions defined by the low-level planning problem are satisfied. The proposed machine

learning algorithm is tested for different values of user-defined step-sizes (∆wh and ∆whxy)

which remain constant for each planning period. Trajectory with initial value of wh,k = 0.5

and whxy,k = 0.4 with ∆wh = 0.001 and ∆whxy = 0.001 gives the transfer time of 158.66

sidereal days with 227 revolutions is less as compared with initial and constant value of

wh,k = 0.5 and whxy,k = 0.4 for every sub-problem with transfer time of 167.72 sidereal days

with 255 revolutions. Simulation results for this nonplanar case are illustrated by Figure

4.13. Note that by using a single neural network, there is no switching from NN used for
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GTO nonplanar transfer to NN used for GTO planar transfer which is observed in Figure

4.4.

Example 17: Sub-GTO to GEO Nonplanar Transfer

For Sub-GTO nonplanar transfer, initial values of wh,k and whxy,k are taken as 0.5 and

0.4 respectively. Then, five actions/trajectories given by Eq.(3.1) are considered. Q-values

or the transfer time to reach GEO from states are estimated by generalized NN for all the

five trajectories and the one trajectory with minimum transfer time [max(−Q(sk,ak))] is

selected for that sub-problem and the corresponding planning state which is obtained from

the dynamic model becomes the initial planning state for the next sub-problem. The transfer

time for that sub-problem is then calculated by Eq.(3.7).

The network keeps on selecting the planning state for every revolution or sub-problem

which gives minimum transfer time to GEO from the current planning state until the terminal

conditions defined by the low-level planning problem are satisfied. The proposed machine

learning algorithm is tested for different values of user-defined step-sizes (∆wh and ∆whxy)

which remain constant for each planning period. Trajectory with initial value of wh,k = 0.5

and whxy,k = 0.4 with ∆wh = 0.0006 and ∆whxy = 0.0006 gives the transfer time of 164.95

sidereal days with 267 revolutions is less as compared with initial and constant value of

wh,k = 0.5 and whxy,k = 0.4 for every sub-problem with transfer time of 173.28 sidereal days

with 297 revolutions. Simulation results for this nonplanar case are illustrated by Figure

4.14.
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Figure 4.14: Generalized neural network results for Sub-GTO Nonplanar case

Example 18: Super-GTO to GEO Nonplanar Transfer

For Super-GTO nonplanar transfer, initial values of wh and whxy are taken as 0.5 and

0.4 respectively. Then, five actions/trajectories given by Eq.(3.1) are considered. Q-values or

the transfer time to reach GEO from states are estimated by NN for all the five trajectories

and the one trajectory with minimum transfer time [max(−Q(sk,ak))] is selected for that

sub-problem and the corresponding planning state which is obtained from the dynamic model

becomes the initial planning state for the next sub-problem. The transfer time for that sub-

problem is then calculated by Eq.(3.7).

The network keeps on selecting the planning state for every revolution or sub-problem

which gives minimum transfer time to GEO from the current planning state until the terminal

conditions defined by the low-level planning problem are satisfied. The proposed machine

learning algorithm is tested for different values of user-defined step-sizes (∆wh and ∆whxy)

which remain constant for each planning period. Trajectory with initial value of wh,k = 0.5
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and whxy,k = 0.4 with ∆wh = 0.001 and ∆whxy = 0.001 gives the transfer time of 151.05

sidereal days with 186 revolutions is less as compared with initial and constant value of

wh,k = 0.5 and whxy,k = 0.4 for every sub-problem with transfer time of 158.16 sidereal days

with 205 revolutions. Simulation results for Super-GTO nonplanar transfer are represented

by Figure 4.15.

Table 4.1 represents the comparison of results for final transfer time required to reach

GEO from all the considered initial orbit obtained by the neural networks with the results

for final transfer time found in Ref.[9].
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Figure 4.15: Generalized neural network results for Super-GTO Nonplanar case
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Table 4.1: Summary of Results

Initial Orbit Initial wh Initial we Initial whxy
TTconst

(sidereal days)

TTadapt

(sidereal days)

TTgeneral

(sidereal days)

Planar Transfers

GTO (250 km x 35786 km ) 0.75 0.25 - 111.74 Ref.[9] 109.98 108.79

Sub-GTO (250 km x 30000 km ) 0.75 0.25 - 118.79 Ref.[9] 115.10 114.13

Super-GTO (250 km x 45000km ) 0.75 0.25 - 104.02 Ref.[9] 103.70 103.34

Nonplanar Transfers (i =28.5 deg)

GTO (250 km x 35786 km ) 0.5 0.1 0.4 167.72 Ref.[9] 158.95 158.66

Sub-GTO (250 km x 30000 km ) 0.5 0.1 0.4 173.28 Ref.[9] 170.09 164.95

Super-GTO (250 km x 45000km ) 0.5 0.1 0.4 158.16 Ref.[9] 153.92 151.05
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CHAPTER 5

CONCLUSION

5.1 Thesis Summary

During recent years, electric propulsion has increasingly become the solution of choice

for propulsion systems for commercial telecommunication satellites. However, when the

electric propulsion is used, it can take transfer time up to several months to reach the target

orbit due to lower thrust as compared with the conventional chemical propulsion. The longer

transfer time results in satellites spending a longer time in the Van Allen belts, where they

are exposed to the harmful effects of space radiation. Therefore, this work approached the

challenge of long transfer time taken by all-electric spacecraft to reach GEO.

The electric orbit-raising problem is formulated as a two-step optimization problem,

with the low-level optimization problem generating the trajectory over a planning horizon.

The high-level planning problem seeks to adapt the weights associated with the objective

function of the low-level optimization problem so as to reduce the projected transfer time.

By performing a parametric study, it is observed that fine-tuning the weights of the objective

function influences the transfer time of the generated low-thrust orbit-raising trajectory and

therefore, the challenge of longer transfer time can be resolved. Advances in the field of arti-

ficial intelligence and machine learning techniques present one avenue in which this problem

can be addressed without any human control and interference. The main aim of this thesis is

to explore novel reinforcement learning methodologies for the purpose of sequential selection

of relative weights for spacecraft low-thrust orbit raising trajectory alongside state-of-the-

art machine learning neural networks, also known as Deep Learning. The reinforcement

technique used in this work is Q-learning. Although, due to the high dimensionality of the

states of our orbit-raising problem, neural networks are incorporated with Q-learning which

is known as Deep Q-learning.
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In the proposed methodology, Deep Q-learning algorithm, a technique with charac-

teristics of reinforcement learning and neural networks, allows the satellite controller to make

sequential decisions in order to safely navigate through the environment. The formulation

for the high-level problem is amenable to the application of reinforcement learning, and ar-

tificial neural networks are used to estimate the transfer time for the orbit-raising maneuver

corresponding to different orbital states and objective function weight selection.

For each orbit-raising scenario, two neural networks are trained on the data provided

by low-level optimization problem for both planar and nonplanar cases. A neural network’s

architecture is defined as five planning states and six planning states as inputs for planar and

nonplanar cases respectively, and transfer time to reach GEO for that planning state as the

output with one hidden layer. Training of these networks is done by using the Levenberg-

Marquardt algorithm by altering the value of hidden layer neurons. The performance of the

neural network is calculated by mean squared error. NN with hidden neurons corresponding

to least MSE is selected. Then, this neural network is integrated with low-level optimization

problem. For every sub-problem, the algorithm compares three different selections of wh

(three different values for wh) for planar case and five different actions (five different values

for wh and whxy) for nonplanar case in order to choose the optimal weight selection for the

high-level planning process. These selections are dependent on the constant values of change

in weights (∆wh and ∆whxy) or step-size for each planning period which are user-defined.

Different values for these step-sizes are tested for the proposed machine learning algorithm.

The action corresponding to the minimum estimated transfer time to GEO is selected for

that sub-problem. This sequence of selecting best action is continued until the terminal

criteria for low-level optimization problem are satisfied.

Moreover, a single generalized neural network is introduced which is trained with data

with the combination of all the mission scenarios considered in this work for both planar

and nonplanar transfers. The training of the single NN is done with the same algorithm as

in the cases for individual transfers. Then, this generalized NN is integrated with low-level
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optimization problem. Consequently, this single generalized neural network gave much better

results as compared with results while using individual networks. Numerical results in the

previous chapter demonstrated that the adaptive weighting scheme can improve the transfer

time for the computed low-thrust orbit-raising trajectory. It is observed that the results

obtained for transfer time by the parametric study are better than by using the planning

algorithm. Although, that comes at the cost of computational time to generate trajectories.

The computational time required to obtain a minimum transfer time trajectory is in the

order of hours whereas trajectories obtained by using the planning algorithm are generated

in the order of few minutes.

5.2 Future Work

Recommendations for future work are:

1. It is recommended to consider the change in the weights (∆wh and ∆whxy) or step-size

for each planning period as an input while training the neural network. This trained

neural network would allow the proposed machine learning algorithm to select the value

of step-size as well in an automated manner. Hence, this adaptive step-size scheme has

the scope of reducing additional time to reach GEO.

2. In the proposed machine learning algorithm, all neural networks are trained with only

one value of thrust and specific impulse implying continuous thrusting with constant

values of thrust magnitude and specific impulse throughout the orbit-raising problem.

This means a methodology could be developed in which a single neural network is

trained for all the possible values of thrust and specific impulse. This would allow the

spacecraft to adaptively select the thrust which could lead to reduced fuel costs.

3. The performance of the generalized NN and in fact, the performance of the individual

NNs, can be improved by changing the architecture of the considered neural network.

For instance, adding one or more hidden layers to the existing neural network could
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lead to higher performance. However, that would come at the cost of more training

time required for the neural network.
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