Clean drinking water is one of the biggest issues in the world, and will be the most studied subject along with food in the near future. Some of the fresh water sources are contaminated with Sulfur, Nitrogen, Phosphorous and other organic and inorganic contaminants. Desalination is a solution to this waste water problem, but it is costly and time consuming process. Objective of this study is to develop a cheaper and sustainable process for cleaning lake and other drinking water sources. In this study, algae, clothes, waste papers and fruit wastes, such as date and olive seeds were used to produce activated carbons. These materials were briquetted under high pressure using different amount of molasses as binder. Date and olive seeds were crushed, sieved and dried prior to the briquetting process. Chemical activation of the briquettes and seeds were performed using zinc chloride (ZnCl₂) and calcium hydroxide (Ca(OH)₂. After the chemical activation, carbonization in inert atmosphere was performed to prepare the proper samples. The pH adjustments were applied after the chemical activation and carbonization processes. Additional, Brunauer-Emmett-Teller (BET) and scanning electron microscopy (SEM) tests were performed to determine the surface area, morphology and porosity of the produced activated carbon. This technique is a promising technique to clean waste water. Activated carbons are expected to remove nitrogen, phosphorus, sulfur and other contaminates from the waste water.