In the U.S.A., plastic waste is about 12.7% of the total municipal waste which is approximately 32 million tons annually. Recovery of plastics is usually done through waste-to-energy or recycling options. Plastic-to-fuel (PTF) presents a unique opportunity to not only address environmental issues but also energy crisis. Also, PTF can address a critical problem for low recyclability rate of plastics. The development of PTF infrastructure can help prevent landfilling of plastics, extending the lifespan of landfills, reducing plastic loitering, producing synthetic crude oil, reducing pollutions associated with high sulfur contents in fossil fuels because plastic oil has ultra-low sulfur contact, and creating green jobs. In this paper, we will review existing methods of converting plastics into fuel. Additionally, we will evaluate various factors, such as operating temperature and pressure, types of reactor and catalyst, and residence time which affect the conversation efficiency and product quality of plastic feedstock.

Keywords: Recycled Plastics, High Temperature and Pressure, Catalyst, Sustainable Fuel Productions