Automatic Subject Heading Assignment for Online Government Publications
Using A Semi-supervised Machine Learning Approach

Xiao Hu Larry S. Jackson Sai Deng Jing Zhang
Graduate School of Library and Information Science
University of Illinois at Urbana-Champaign

The Government Document Problem Space

- Preserving Electronic Publications (PEP)
 - http://www.isrl.uiuc.edu/pep
 - Archive government documents published on the web
 - Use share-free-ware modules, open standards, and other cost-containment measures

- Capturing Electronic Publications (CEP)
 - Support multi-state deployment of our web archiving facility
 - Harvest government information for IL, NC, MT, AZ, AK, UT, WI

- Electronic Documents Initiative (EDI)
 - Provide permanent retention and web access to "official" State publications existing in electronic form

Illinois Government Information (IGI) search engine

- Provide users with full access to online government information
- Support searching by subject, website, originator, etc.

http://findit.lib.uiuc.edu

- Fully accessible
- Uses metadata byproducts of CEP web archival, delivered as EDI-style surrogates
- All open-source (CEP & Swash-E)
- Far outperformed the existing IGI search engine
 (of the FindIt title)

- Problems:
 - Lack of author provided metadata
 - Text mining techniques to automatically extract metadata
 - Organize documents with a hierarchy of subject headings
 - "Topic Tree" : adapted from GILS tag set
 - Semi-supervised algorithm to generate subject heading

Automatically Assigning Subject Headings

- Semi-supervised Learning
 - Manually labeling subject headings is very expensive
 - Unlabeled examples are abundant
 - Use unlabeled examples help assign subject headings

- Expectation – Maximization (EM) Algorithm
 - Assume unlabeled examples subsume same probability distributions as labeled examples

classifier = new Classifier (a small set of labeled examples);

while (! converge) {
 E-step: classifier-labeling (unlabeled examples);
 H-step: classifier.estimate (all examples);
}

Data Statistics

<table>
<thead>
<tr>
<th></th>
<th># of docs</th>
<th># of headings</th>
<th># of unique terms</th>
<th># of features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training data</td>
<td>184</td>
<td>654</td>
<td>4,597</td>
<td>1,500</td>
</tr>
<tr>
<td>Testing data</td>
<td>145</td>
<td>471</td>
<td>(by Info. Gain)</td>
<td></td>
</tr>
</tbody>
</table>

Classification Models

<table>
<thead>
<tr>
<th></th>
<th>Semi-supervised</th>
<th>Supervised</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expectation-Maximization (EM)</td>
<td>Naive Bayes classifier</td>
<td></td>
</tr>
</tbody>
</table>

On a multinomial mixture model using logarithmic term frequency

Evaluation Measures

<table>
<thead>
<tr>
<th></th>
<th>Macro-average</th>
<th>Micro-average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precision (P)</td>
<td>average the measures over all categories</td>
<td>average the measures over all documents</td>
</tr>
<tr>
<td>Recall (R)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F1 = 2PR / (P + R)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conclusions

- An example of applying a semi-supervised text categorization approach in a real-world practice
- Assignment improvements are observed in experiments
- More labeled training data may be needed to better demonstrate merits of the EM algorithm
- Experiments provide a reference to other projects working with online government information
- Working towards reducing the cost of subject heading assignment

Future Work

- Compare this approach with others
- Effectiveness & Efficiency
- Perform a formal user needs assessment
- Test thoroughly on scalability
- Deploy in Illinois’ IGI search engine

Unsupervised Leading Methods

- SimpleKMeans:
 - 32% precision on the whole Illinois collection of 422,152 documents
 - Pros: no need for labeled training examples
 - Cons: limited precision

Collection-level default subject headings

- Assign same subject headings to all documents in one website
- Pros: efficient
- Cons: coarse granularity of assigned subject headings
 Needs user studies to validate

http://findit.lib.uiuc.edu

- Fully accessible
- Uses metadata byproducts of CEP web archival, delivered as EDI-style surrogates
- All open-source (CEP & Swash-E)
- Far outperformed the existing IGI search engine
 (of the FindIt title)

- Problems:
 - Lack of author provided metadata
 - Text mining techniques to automatically extract metadata
 - Organize documents with a hierarchy of subject headings
 - "Topic Tree" : adapted from GILS tag set
 - Semi-supervised algorithm to generate subject heading

Figure 1: Macro averaging performance. The number 0 on the x-axis corresponds to
the Naive Bayesian classifier which doesn’t need unlabeled documents.

Figure 2: Learning curves of the EM and NB classifiers. In the EM classifier, the numbers
of unlabeled documents are set as 10 times more than corresponding labeled ones.

Contact: xiaohui, larryj, saideng, jingzhang@uiuc.edu
Sai is currently working at Wichita State University Library, Wichita, KS