The Effects of Training Modality on Anatomy Learning Outcomes: Augmented Reality vs. Fiberglass Models of the Heart

Brady Patzer
Faculty: Joseph R. Keebler

Department of Psychology, Fairmount College of Liberal Arts and Sciences

For healthcare professionals, anatomy knowledge is essential. Traditional modes of training allow anatomy visualization, yet issues exist with their use. Emerging technologies (e.g., augmented reality) may provide alternative visualization tools. A study was conducted to compare training modality on anatomy learning outcomes. Specifically, learning scores were compared for traditional training tools (i.e., a fiberglass model of the heart) and novel training tools (i.e., a digital augmented reality model of the heart). Results suggest that learning the anatomy of the heart with augmented reality as a training tool does not seem to provide a significant change in learning when compared to training using the traditional fiberglass models. However, augmented reality training tools present a more enjoyable, curiosity inducing, and easier to use learning tool than the fiberglass model. Furthermore, the addition of labels directly onto the augmented reality model significantly boosted learning when compared to an unlabeled augmented reality model.