
 
 
Wichita State University Libraries 
SOAR: Shocker Open Access Repository 
 

 

 

 
Mehmet Bayram Yildirim                                                                         Industrial Engineering 
 

 

An Ant Colony Optimization Algorithm for Load Balancing in Parallel 
Machines with Sequence Dependent Setup Times 
 
Timur Keskinturk 
Department of Quantitative Methods, Faculty of Business Administration, Istanbul University 
 
Mehmet B. Yildirim 
Wichita State University, bayram.yildirim@wichita.edu 
 
Mehmet Barut 
Barton School of Business, Wichita State University 
 

 

 

 

 

 

 

 

_________________________________________________________________ 

Recommended citation 
Keskinturk, Timur., Yildirim, Mehmet B. and Mehmet Barut. 2010. An Ant Colony Optimization 
Algorithm for Load Balancing in Parallel Machines with Sequence Dependent Setup Times.  Computers & 
Operations Research, In Press. doi:10.1016/j.cor.2010.12.003 
 
This paper is posted in Shocker Open Access Repository 
http://soar.wichita.edu/dspace/handle/10057/3501 



 
 

AN ANT COLONY OPTIMIZATION ALGORITHM FOR LOAD 
BALANCING IN PARALLEL MACHINES WITH SEQUENCE-

DEPENDENT SETUP TIMES 
 

Timur Keskinturk,†  Mehmet B. Yildirim, 1 

Mehmet Barut¥ 
 

† Department of Quantitative Methods, Faculty of Business Administration 
Istanbul University 

Istanbul 34850, Turkey 
 

Department of Industrial and Manufacturing Engineering 
Wichita State University 
Wichita, KS 67260, USA 

 
¥ Department of Finance, Real Estate, and Decision Sciences 

Barton School of Business 
Wichita State University  
Wichita, KS 67260, USA

 

 
Abstract: This study introduces the problem of minimizing average relative percentage of 
imbalance (ARPI) with sequence-dependent setup times in a parallel-machine environment. 
A mathematical model that minimizes ARPI is proposed. Some heuristics, and two 
metaheuristics,  an ant colony optimization algorithm and a genetic algorithm are developed 
and tested on various random data. The proposed ant colony optimization method 
outperforms heuristics and genetic algorithm. On the other hand, heuristics using the 
cumulative processing time obtain better results than heuristics using setup avoidance and a 
hybrid rule in assignment. 
 
Keywords: Load Balancing, Parallel-machine Scheduling, Sequence-Dependent Setups, Ant 
Colony Optimization, Genetic Algorithm, Heuristics 
 
  

                                                 
1 Corresponding Author, Email: Bayram.yildirim@wichita.edu, Phone: +1-316-978 3426, Fax: +1-316-978 3742 
 



2 
 

AN ANT COLONY OPTIMIZATION ALGORITHM FOR LOAD 
BALANCING IN PARALLEL MACHINES WITH SEQUENCE-

DEPENDENT SETUP TIMES 
 

Timur Keskinturk,†  Mehmet B. Yildirim, 2 

Mehmet Barut¥ 
 

† Department of Quantitative Methods, Faculty of Business Administration 
Istanbul University 

Istanbul 34850, Turkey 
 

Department of Industrial and Manufacturing Engineering 
Wichita State University 
Wichita, KS 67260, USA 

 
¥ Department of Finance, Real Estate, and Decision Sciences 

Barton School of Business 
Wichita State University  
Wichita, KS 67260, USA

 

 

Abstract: This study introduces the problem of minimizing average relative percentage of 

imbalance (ARPI) with sequence-dependent setup times in a parallel-machine environment. 

A mathematical model that minimizes ARPI is proposed. Some heuristics, and two 

metaheuristics,  an ant colony optimization algorithm and a genetic algorithm are developed 

and tested on various random data. The proposed ant colony optimization method 

outperforms heuristics and genetic algorithm. On the other hand, heuristics using the 

cumulative processing time obtain better results than heuristics using setup avoidance and a 

hybrid rule in assignment. 

Keywords: Load Balancing, Parallel-machine Scheduling, Sequence-Dependent Setups, Ant 

Colony Optimization, Genetic Algorithm, Heuristics 

 

  

                                                 
1 Corresponding Author, Email: Bayram.yildirim@wichita.edu, Phone: +1-316-978 3426, Fax: +1-316-978 3742 
 



3 
 

1.   INTRODUCTION 

This paper presents a mathematical model for a parallel-machine problem with sequence-

dependent setups where the goal is to minimize total relative imbalance. Rajakumar et al. 

(2004, 2006, and 2007) observed that the minimization of imbalance may reduce idle time 

and work in process, maximize throughput, minimize the finished goods inventory, and lower 

operating expenses.  Furthermore, the impact of the machine with the highest workload, 

representing a bottleneck that prevents achieving high system throughput, may be reduced by 

utilizing all machines as equally as possible.  

 

Workload balancing has several applications. Aubry et al. (2008) pointed out the applications 

of workload balancing in the semiconductor manufacturing industry. Duman et al. (2008) 

showed how a balanced schedule can improve productivity in the manufacturing of aluminum 

on parallel continuous casting lines. Yildirim et al. (2007) provided examples from the 

service industry (such as nurse scheduling) and production planning in a machine shop.  

Hillier and Brandeau (2001) illustrate another application for workload balancing in printed 

circuit board assembly. Assigning tasks to workers in an office or shop floor is another viable 

example. To maintain the morale of the workforce, it is of utmost important to keep the 

assignment of jobs to employees working in the same area as equally balanced as possible 

(i.e., assign approximately equal workload) to minimize tension on the office or shop floor.    

 

The goal of workload balancing is to distribute jobs/tasks to resources in such a way that the 

relative imbalance is minimized, and the utilization of resources is approximately equal. 

Rajakumar et al. (2004, 2006, and 2007) defined workload balancing as the minimization of 

total relative imbalance (the ratio of the difference between maximum completion time on all 

machines and individual completion time on a given machine, and the maximum completion 
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time). Duman et al. (2008) and Yildirim et al. (2007) achieved workload balance by ensuring 

that the completion times on individual machines are within a certain percentage of each 

other while minimizing the total completion time on all machines. Aubry et al. (2008) 

achieved load balancing by having the same completion time on each machine. 

 

Workload balancing on parallel machines has been studied in various environments. For 

example, Rajakumar et al. (2004, 2006, and 2007) considered the case where jobs have 

deterministic processing times on identical parallel machines. Furthermore, Rajakumar et al. 

(2007) analyzed the impact of having precedence constraints on workload balancing.  Aubry 

et al. (2008) studied the problem on parallel multi-purpose machines with machine-dependent 

setups. Yildirim et al. (2007) and Duman et al. (2008) investigated workload balancing on 

unrelated parallel machines in the presence of sequence-dependent setups.  At all settings and 

environments, the workload-balancing problem is closely related to difficult-operation 

research problems, such as the set-partitioning problem (Rajakumar et al., 2004, 2006, and 

2007; Aubry et al., 2008) or vehicle-routing problems (Yildirim et al., 2007;  Duman et al., 

2008), which are strongly NP-hard problems. The researchers of this paper studied the 

workload-balancing problem using sequence-dependent setups, with the objective of 

minimizing total relative imbalance. In other words, the goal was to assign jobs to different 

machines and determine the sequence of jobs to minimize average relative percentage 

imbalance.   

 

Chen and Powell (2003) observed that solving a problem for non-identical parallel machines 

for any objective is more complex than for identical parallel machines, and the sequence-

dependent setup time will further complicate the problem. Allahverdi et al. (1999) provided a 

review of scheduling problems with setups.  Fowler et al. (2003) analyzed parallel-machine 
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problems having makespan, total weighted completion time, and total weighted tardiness 

objectives with sequence-dependent setups. Due to the complexity involved in terms of 

formulation and computational time, several methods have been proposed to solve parallel-

machine problems with sequence-dependent setups: dynamic programming (Gascon and 

Leachman, 1998), branch and bound (Dietrich and Escudero, 1989), and heuristics (Pinedo, 

1995). Tamaki et al. (1993) proposed a genetic algorithm to solve unrelated parallel-machine 

scheduling problems with resource constraints. Yalaoui and Chu (2003) and Tahar et al. 

(2006) proposed a linear programming approach for minimization of completion time in the 

presence of sequence dependent setup times and job splitting. Chen (2006) used heuristics 

and simulated annealing for unrelated parallel machines with a mean tardiness objective as 

well as secondary resource constraints and setups. 

 

The contributions of this paper can be summarized as follows: (1) first, we present a 

mathematical model to formulate the load balancing of a parallel scheduling problem with 

sequence-dependent setups when the objective is minimization of total relative imbalance; (2) 

then, we propose an ant colony optimization metaheuristic to solve the resulting problem; and 

(3) finally, we analyze the performance of this heuristic under various conditions and 

compare its performance with nine simple dispatching rules (very similar to those used in the  

load-balancing literature) and a genetic algorithm. We also present results on the performance 

of the simple dispatching rules. 

 

The organization of this paper is as follows: In the next section (Section 2), we present the 

notation utilized in this paper and propose a mixed-integer mathematical model that 

minimizes total relative imbalance. Section 3 and 4 present an ant colony optimization 

algorithm  and a genetic algorithm for obtaining good results in a reasonable amount of time. 
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Section 5 presents heuristics to solve this problem.  The experimental setup is followed by 

computational experimentation. 

 

2.  PROBLEM DEFINITION  

In the parallel-machine scheduling problem with workload balancing with sequence-

dependent setups, all problem parameters are assumed to be deterministic.   K is the set of 

parallel machines, and |K| denotes the number of machines, i.e., the cardinality of set K. 

Similarly, J is the set of jobs that needs to be processed on these machines.  Kj is the subset of 

machines on which job j can be processed, and Jk is the subset of jobs that can be processed 

on machine k.   Jobs are available at time zero. If job i precedes job j on machine k, then there 

is a sequence-dependent setup time of Sijk between jobs i and j.  Let pik be the processing time 

of job i on machine k.  No preemption of jobs is allowed. Each job is processed on only one 

machine and only once.  

 

In this problem, to maximize potential throughput, it is assumed that all feasible schedules are 

non-delay schedules. In other words, no machine is kept idle other than during the required 

sequence-dependent setups when there is an operation available for processing, so there is no 

forced idleness.  

 

Let kC  be the total completion time of all jobs assigned to machine k.  The imbalance is 

defined as max kC C , where the minimization objective will force maxC to have the value of 

maximum completion time of jobs on all parallel machines, i.e., 

max max .Kk kC C  

The relative imbalance on machine k is the ratio of imbalance and the maximum completion 

time on all machines, i.e.,  
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max

max

relative imbalance = .k
k

C C

C


 

Below is a mathematical program to minimize average relative percentage imbalance with 

sequence-dependent setup times in an unrelated parallel machine. The goal of the 

mathematical model for parallel-machine workload balancing with sequence-dependent setup 

(PMWBSDS) is to schedule jobs on unrelated parallel machines to minimize the average 

relative percentage of imbalance (ARPI).  

max

max

1
min   100k

k K

C C

K C

 
  

 
  

(1) 

Mathematically, the total completion time on machine k, 
kC  is defined as  

         
k k

k ik ik ijk ijk
i J i J j J

C y p x s k K
  

     (2) 

where  

1 if job  is assigned to machine 

0 otherwiseik

i k
y 





 

and 

1 if job  is the immediate predecessor of job  on machine 

0 otherwiseijk

i j k
x 





 

Constraint (3) ensures that the maximum workload is greater than or equivalent to individual 

workloads. 

max                kC C k K   (3) 

Constraint (4) ensures that each job is assigned to a processing line. 

1          
i

ik
k K

y i J


   (4) 

Constraint (5) guarantees that a job cannot precede another job on machine k unless it has 

been assigned to machine k. 
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          , ,
ijk ik i k

x y i J k K j J     (5) 

Constraint (6)/constraint (7) ensures that a job must be before/after another job on a 

production line. 

         ,
k

ijk ik k
i J

x y k K j J


    (6) 

         ,
k

ijk ik k
j J

x y k K i J


    (7) 

Constraint (8) represents sub-tour elimination constraints, which ensure that a job cannot be 

the immediate predecessor or successor of two or more different jobs at the same time. 

' '

' '| | 1           
k k

ijk k k k

i J j J

x J J J
 

    (8) 

Note that any solution with a zero ARPI value is optimal.  The relationship of PMWBSDS 

with what is in the literature is as follows: 

 In Yildirim et al. (2007) and Duman et al. (2008), the objective function is 

minimization of the total completion time on each machine, i.e.,  

min .total k
k K

C C


   

Furthermore, balancing the workload is achieved by having the following constraints:   

1 1
(1 )  and (1 ) for     

| | | |
     k total k totalC C C C k K

K K
     

 



where α is the level of tolerance above and below the average workload. This problem 

is very similar to vehicle-routing problems with load-balancing constraints.  When 

there is one machine, the problem reduces to 1|Sij|Cmax, which is NP-complete.  

 When Sijk=0, i.e., there is no sequence-dependent setups, and PMWBSDS reduces to 

the problem defined by Rajakumar et al. (2004, 2006).  

 When there are machine-dependent setups, i.e., Sik =Sijk and there is a constraint that 

enforces all machines to have the same completion time, i.e., kC  is constant then the 
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problem reduces to the one proposed by Aubry et al. (2008).  Aubry et al. prove that 

this problem is NP-complete by reducing the 3-partioning problem into this problem.  

 

The PMWBSDS problem is closely related to the set partitioning problem: PMWBSDS aims 

to partition jobs into subsets (i.e., assign jobs to machines) and then sequence the jobs in such 

a way that all machines have the same completion time.  However, since there are sequence-

dependent setups between jobs, one must determine the “correct completion time” while 

having a non-delay schedule in order to achieve “zero” relative imbalance, if possible. 

PMWBSDS has an exponential number of possible solutions. This motivated us to develop 

heuristics, an ant colony optimization algorithm and a genetic algorithm to find good 

solutions in a reasonable amount of time.  

 

3.  ANT COLONY OPTIMIZATION FOR IDENTICAL PARALLEL-MACHINE 

SCHEDULING 

This study proposes an ant colony optimization for parallel-machine scheduling with load 

balancing and setups algorithm (or simply ACO algorithm) to solve the PMWBSDS problem 

defined in section 2. The ACO algorithm is a metaheuristic that can be used to solve complex 

optimization problems (Dorigo and Gambardella, 1996).  The ACO algorithm is developed 

by the inspiration of ants’ ability to find the optimal (shortest) route between their nests and 

target food locations. In the presence of alternative routes, ants initially spread out to each 

route equally; however, after a certain period of time, they converge to the optimal route 

since there is more pheromone on shorter routes when compared to longer routes as a result 

of a higher number of trips occurring on shorter routes in a unit of time.  
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In standard ACO, the ants’ route preferences depend on the amount of pheromone, which is 

determined by the usage frequency of the matching route. Shorter distance to the destination 

(i.e., better objective function value) results in greater pheromone level. The paths that 

correspond to potential solutions have pheromone level as a function of the route 

performances. Pheromone update has two main elements: evaporation of the pheromone on 

all of the routes at a certain rate, and keeping the amount of pheromone on the routes that the 

ants have already passed (i.e., the past solutions) inversely proportional to the total relative 

imbalance level.  The evaporation ratio causes a reduction in the importance of the previous 

solutions. A pheromone increase that is inversely proportional to the fitness of the route 

ensures the importance of the fine solutions (Dorigo and Gambardella, 1997). 

 

In load balancing in parallel machines with the sequence-dependent setups problem, the goal 

is to assign and sequence |J| jobs over |K| machines to minimize the total imbalance. To solve 

PMWBSDS using a metaheuristic, two decisions should be made: first, determining the 

assignment of jobs to machines, and then determining the order of jobs in order to obtain a 

good solution that will minimize the relative imbalance. 

 

Construction of Graph 

The graph that is used in ACO is generated as follows:  jobs are represented as supernodes 

(which can also be defined as node clusters). Each supernode has |K| nodes, which represent 

the machines on which each job can be processed. The nodes on each supernode are not 

connected. However, every node in a super node is connected to all other nodes in other 

supernodes. For the sake of completeness, a dummy node, which can be viewed as the ant’s 

nest (i.e., the start and end point of an ant’s tour), is defined. This dummy node is connected 

to every other node on the graph.  As a result, the graph has one dummy node, |J| supernodes, 
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and |J||K| nodes.  The total number of edges are (|J||K|)2. On this graph, to construct a solution, 

the artificial ant travels to each supernode (i.e., visits any node [machine] on that supernode) 

and then returns back to the dummy node (i.e., completes the tour on the graph). This tour 

spans |J|+1 edges. When an ant completes a tour, the order of visiting each supernode yields 

the order of assignment of jobs to the machines.  Furthermore, the node visited at each 

supernode determines the assignment of a job to a machine.   

 

************************Insert Figure 1 around here************************* 

An illustration for graph construction is given in Figure 1. In this example there are three jobs 

and two machines. In the graph, the jobs (supernodes) are represented by rectangles. The 

machines on which each job can be processed are represented by circles (nodes). The nodes 

in a rectangle are not connected. The dummy node (node 0) is connected to any other node on 

the graph. The goal of an ant is to visit all of the rectangles using the edges defined on the 

network and return back to the dummy node. This tour corresponds to a solution for 

PMWBSDS.  

************************Insert Figure 2 around here************************* 

 

To illustrate this route construction, consider Figure 2, where there are five jobs and three 

machines. The path of Ant 1, represented by red dotted arcs, is (0), (1, 3), (3, 1), (2, 2), (4,1), 

(5, 3), (0), where (i, k) is (job, machine). This route results in the following solution:  on 

machine 1, first job 3 and then job 4 are processed. On machine two, only job 2 is processed. 

Finally on machine three, first job 1 and then job 5 are processed. Similarly, artificial Ant 2’s 

tour (represented by the solid line) results in the following solution:  on machine 1, job 2 and 

then job 1 are processed. Machine 2 processes job 5, whereas machine 3 processes job 4 and 

then job 3.   
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Outline of Ant Colony Optimization Algorithm 

In the ACO algorithm, after the construction of the graph, at each iteration, artificial ants 

travel over the graph to find routes that correspond to better solutions. Upon completion of an 

iteration, i.e.,  ants complete tours of |J| supernodes, the amount of pheromone trail on each 

edge is recalculated according to the quality of solutions obtained during that iteration.  

 

A feasible order and assignment is obtained when an ant visits all of the supernodes. In order 

to complete a tour (i.e., find a solution to the PMWBSDS problem), at any given node, an ant 

must decide what node to visit next.  

 

For any ant , the set of candidate nodes that may be visited in the remainder of the tour are 

defined as a tabu list. In tabu  , those jobs (supernodes) that have been visited (i.e., the jobs 

that have been assigned already)  are excluded from the choice through the use of a tabu list.   

  

Let  (( , ),( ', ')) ( )i k i k t  be the artificial pheromone trail on an arc from ( , )i k  to ( ', ')i k at iteration t.  

Similarly, (( , ),( ', ')) ( )i k i k t is the incremental pheromone amount, which is found as a function 

of the fitness of the solutions that are found by all ants at iteration t. Initially, the pheromone 

level on each edge is set to an arbitrary but small level of 0.  After an iteration is completed, 

the level of pheromone level on each arc is updated. 

 

Let ( )ARPI t  be the average relative percentage imbalance for the solution obtained by ant 

   at iteration t.  Then, after iteration t is completed, the pheromone level on ant ’s path is 

updated using the following formula: 
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(( , ),( ', '))

1
    if ant  travels on edge (( , ), ( ', '))

( )( )

0                    otherwise
i k i k

i k i k
ARPI tt  



  


 

Note that since the best objective function value for the load-balancing problem is zero, when 

a solution with zero ARPI is obtained, then the ant colony algorithm stops. The overall 

change in the pheromone level as a result of the ants (new solutions) is calculated as 

(( , ),( ', ')) (( , ),( ', '))
1

( ) ( )i k i k i k i kt t



 




    

The total amount of pheromone level at any edge on the network is  

(( , ),( ', ')) (( , ),( ', ')) (( , ),( ', '))( 1) (1 ) ( ) ( )i k i k i k i k i k i kt p t t       

where p is an evaporation rate that represents the evaporation of the trail between iteration t 

and t+1. Before the algorithm starts, the pheromone level on arcs that correspond to the 

heuristic solutions is updated. 

 

Selection of the next node, which has not been visited yet, can be made in three ways: 

  

(a) With probability q, select the node that has the maximum pheromone amount, 

i.e.,  

 (( , ),( , ))
( , )

( ', ') arg max ( )
i k i k

i k tabu

i k t





     

(b) With probability d, select the node with respect to a discrete probability 

function, which is a function of pheromone trails on all edges, i.e.,   

 

(( , ),( ', '))

(( , ),( , ))(( , ),( ', '))
( , )

( )
,                if  ( , )

( )Pr ( )

0,                                                  otherwise

i k i k

i k i ki k i k
i k tabu

t
i k tabu

tt











         



  
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 where (( , ),( ', '))Pr ( )i k i k t is the transition probability from node ( , )i k  to node ( ', ')i k  

for the  -th ant.  

(c) With probability r, select the next node randomly from the tabu list. The random 

selection helps in diversifying the solutions. 

Note that q+d+r=1.   

 

The pseudocode for the ACO algorithm is summarized in Figure 3.  To improve the 

performance of the algorithm, after each iteration, a first improvement local search procedure 

can be utilized (ACO*): the 2-exchange heuristic is used to switch the positions of two jobs, 

either on the same machine or on different machines. If the exchange improves the current 

solution, it is kept.  At each iteration,  |J|2 exchanges is performed.  

************************Insert Figure 3 around here************************* 

 

4.   A GENETIC ALGORITHM TO SOLVE THE PMWBSDS PROBLEM 

 

Genetic algorithms mimic the process of evolution in order to solve complex combinatorial 

problems, and have been applied widely to parallel-machine problems. In each generation, a 

genetic algorithm is capable of producing and maintaining a set of feasible solutions (Fowler 

et al., 2003), maintaining a population of candidate solutions, and evaluating the quality of 

each candidate solution according to the problem-specific fitness function. New candidate 

solutions are created by selecting relatively fit members and recombining them through 

various genetic operators (crossover, mutation and selection). The pseudo-code of the genetic 

algorithm is presented in Figure 4, and then the components of the proposed genetic 

algorithm are explained in detail. 

************************Insert Figure 4 around here************************* 
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Representation (Coding): Our implementation includes a super chromosome of size |J|, 

which is composed of sub-chromosomes that represent the sequence of jobs on each machine 

(see Figure 5 for a problem involving ten jobs on three machines). First jobs from the first 

machine are listed in the scheduled order on the super chromosome, followed by jobs on 

machine 2 through machine |K|.  In another array, is kept the information on how many jobs 

are scheduled on each machine (e.g., for the solution in Figure 5, the array will be [3,4,3], i.e. 

three jobs on machine 1, four jobs on machine 2 and three jobs on machine 3). 

***********************Insert Figure 5 around here************************* 

 

Initialization: Fowler et al.  (2003) reported that assigning jobs based on some pre-

determined rules may provide better solutions and reduce computational time than generating 

random solutions. Hence, an initial set of solutions includes solutions from the proposed 

heuristics and random solutions.  

 

Evaluation of Fitness Function: The fitness function f for a chromosome   to penalize the 

objective function severely can be calculated as a function of the objective function value as 

 f ( )ARPI ARPI
   

where ARPI  is the average relative percentage imbalance of the solution/chromosome  . 

Selection: The selection model should reflect nature's survival of the fittest. Normally, in a 

genetic algorithm, chromosomes with a better fitness value will receive more chances to 

survive in the next generations.  In this paper, the roulette wheel system is used to select 

parents for the next generation (Ip  et al., 2000).  
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Crossover: Once parents are selected, the crossover operation is applied with a probability of 

Pc to generate two new offspring solutions. The type of crossover employed in our genetic 

algorithm implementation is single point crossover: Two parent strings are selected randomly 

from the population. A random number between 2 to |J|-1 is generated (where |J| is the length 

of the chromosome) to determine the crossover point.  When crossover is finished, the genes 

before the crossover point in the first chromosome are the first part of the first child 

chromosome. The second part of the first child chromosome is generated by checking the 

genes from the second chromosome one by one and adding those genes that are not yet in the 

child chromosome (Figure 6). Similarly, the 2nd child chromosome is generated.   

************************Insert Figure 6 around here************************* 

Mutation: The mutation operator moves a gene to another position on the chromosome 

randomly, with a probability equal to the mutation probability, Pm. If the new position is on 

the same machine, then only the order of jobs changes. However, if the gene is moved to 

another machine, the number of jobs and order of jobs on both machines may change. In 

Figure 7, job 5 on machine 1 is moved to the last job on machine 3, and the number of jobs is 

increased to three.  

***********************Insert Figure 7 around here************************* 

 

Local Search (optional): After each iteration, similar to ACO search algorithm, a first 

improvement local search, a 2-exchange heuristic, is used to switch positions of the two jobs, 

either on the same machine or on different machines. If the exchange improves the current 

solution, it is kept. At each iteration, |J|2 number of exchanges is performed.  

 

Two variants of the genetic algorithm without (GA) and with local search (GA*) are utilized 

to solve the PMWBSDS problem. 
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5. OTHER METHODS TO SOLVE THE PMWBSDS  PROBLEM 

In order to provide quick solutions to the PMWBSDS problem, heuristics can be utilized. 

Although heuristics/dispatching rules cannot guarantee optimality, they are usually easier to 

implement, and they find solutions in less time compared to finding the optimal solution via 

methods such as branch and bound, or good solutions via metaheuristic methods. To solve the 

parallel-machine workload-balancing problems, several heuristics have been proposed. For 

example, Rajakumar et al. (2004, 2006) utilized Shortest Processing Time (SPT), Longest 

Processing Time (LPT) dispatching rules to schedule jobs on machines for the workload-

balancing problem in the absence of setups. When there are sequence-dependent setups, 

Yildirim et al. (2007) proposed several dispatching rules that minimize the total completion 

time while considering the workload balancing constraint.  

 

In this section, several heuristics similar to those of Yildirim et al. (2007) are presented to 

minimize the average relative imbalance in the presence of sequence-dependent setups. In 

these heuristics, jobs are ordered with respect to an ordering criterion, and then they are 

assigned to a machine based on an assignment criterion.  

 

The criteria utilized to order jobs are as follows: 

Random (RN):  The order of jobs is random. 

Longest Processing Time (LPT):  Jobs are ordered in non-increasing processing 

time. 

Shortest Processing Time (SPT):  Jobs are ordered in non-decreasing processing 

time. 
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After the order is determined, then jobs selected from the ordered list are assigned to 

machines using the following assignment rules: 

Setup Avoidance (SA): This rule assigns the job to the machine that causes the least 

setup time. Fowler et al. (2003) noted that the SA rule is a commonly used rule by scheduling 

practitioners for problems with sequence-dependent setups when the objective is to minimize 

the makespan. 

Cumulative Processing Time (CPT): Jobs are assigned to the machine that yields 

the least cumulative workload.  

Hybrid Cumulative Processing Time and Setup Avoidance (CPT-SA): At any 

iteration, if the imbalance is within  , then the SA rule is used. Otherwise, CPT is applied. 

In the case of a tie, jobs are assigned to the lower index machine. Note that, for any heuristic, 

the imbalance for machine k is calculated as 

 
max

1 k
k

C

C
  

 

There are three ordering rules and three assignment rules. A combination of an “order” rule 

and an “assignment” rule results in nine heuristics to minimize the imbalance. As can be seen 

in Table 1, each heuristic, hi, has a name, which consists of an ordering rule and an 

assignment rule. For example, with h4, the LPT-SA heuristic orders the jobs via the longest 

processing time rule and then assigns jobs to the machines using the setup avoidance rule.   

 

************************Insert Table 1 around here************************* 

 

6.   COMPUTATIONAL EXPERIMENTATION 

This section discusses how to generate different scenarios to test the effectiveness of the 

proposed heuristics in environments of two to six machines. The ACO algorithm, GA, and 
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heuristics are programmed using MATLAB R2007b. Below is a description of the 

experimental design, which is followed by results and discussion.  

 

6.1  EXPERIMENTAL DESIGN 
 
Generation of Experimental Data 

The experimental setup considers the following factors:   number of machines—two to six 

machines (2M, 3M, 4M, 5M, and 6M);  number of jobs (20, 40, and 60); and processing 

time/setup time ratio (  : low [  =0.1], medium [  =1], and high [  =10]). As a result, the 

total number of scenarios is 45. For each scenario, we generated 20 problems and ran each 

instance ten different times.  Nine solutions from heuristics h1,…, h9 are also considered in 

the set of initial solutions for both ant colony optimization and genetic algorithms. 

The job data, processing time, and setup time are generated using a method similar to 

that of Fowler et al. (2003). As shown in Table 2, when the processing time/setup time ratio 

(pt/st) is high (i.e., pt/st=0.1), then the processing times are generated using a uniform 

distribution with a mean of 10 (U[0, 20]+5), while the setup time is generated using a 

uniform distribution that has an expected value of 150. The setup time matrix is asymmetric 

(i.e., sijk may not be equal to sjik). 

 

************************Insert Table 2 around here************************* 

 

An initial experimentation is performed to determine the best imbalance factor that should be 

utilized for heuristics h3, h6, and h9, where the assignment rule is CPT-SA. The maximum 

imbalance factor is chosen to be 20%.  
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Fine Tuning of Parameters for ACO Algorithm 

Selection of good parameters can play a vital role in the running time and effectiveness of the 

ACO algorithm. In our ACO algorithm implementation, the ant population size is 20, and the 

initial pheromone level is 10-8. In order to determine the best combinations for p, q, d, and r, 

and also to investigate the impact of these parameters on ACO algorithm performance, an 

experimental design is performed. The ACO algorithm is run using p, q, d, and r at the levels 

summarized in Table 3.  

************************Insert Table 3 around here************************* 

 

The experimental design summarized in Table 3 is used to solve “difficult” problems with a 

pt/st ratio of 10, while keeping the number of machines constant. For each number of jobs 

(20, 40 and 60) and machine combination (2, 3, 4, 5, and 6), the experimentation is performed 

over 15 randomly generated problems using 42 combinations of (p, q, d, r) parameters. In all 

experiments, the ACO algorithm is run for 1,000 iterations and each experiment is run 100 

times. The performance of a particular combination is determined by the average 

performance over 15 problems and 100 runs. The optimal parameter set for a problem class is 

the parameter combination that yields the best overall performance (see Table 4). For 

example, on a 40-job problem with two machines, the ACO algorithm finds good results with 

all combinations of (p, q, d, r). The best combination for 40-job problems on five machines is 

by having an evaporation rate of 0.5 while selecting the edge with the maximum pheromone 

level 80% of the time. 

 

************************Insert Table 4 around here************************* 
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Fine Tuning of Parameters for GA Algorithm 

The crossover probability (Pc) and mutation probability (Pm) of the GA proposed in section 

4 is obtained using a similar experimental design utilized for the ACO algorithm parameter 

tuning. The initial population is from the nine heuristics and also randomly generated.  GA 

has a population size of 20, and total number of iterations of 2,000.   

The GA algorithm is run using Pc of 0.5, 0.7, and 0.9 and Pm of 0.005, 0.010, and 0.050. The 

experimentation is performed over the same data set, number of iterations and runs as in the 

ACO parameter fine tuning.  The optimal combination of these parameters is summarized in 

Table 5 for different number of jobs and machines combinations. For example, for 40 jobs 5 

machines, the optimal crossover probability is 0.9 and mutation probability is 0.01.  

************************Insert Table 5 around here************************* 

Note that we have performed fine tuning process for ACO and GA only on 20, 40 and 60 

jobs.  

6.2   RESULTS AND DISCUSSION 

Heuristics h2, h3, h5, h8, and h9 also provide relatively good results for the 20-machine case. 

In these heuristics, the utilized assignment rules are CPT and CPT-SA.  Among the 

heuristics, the best performance is obtained in h5, where the ordering rule is LPT.  The 

heuristics  (h1, h4, and h7) that utilize the SA assignment rule, which provides good results in 

minimization of completion time in the presence of sequence setups (Fowler et al., 2003), do 

not outperform other heuristics when the objective is the minimization of total relative 

imbalance. The ACO* algorithm finds results with a much lower ARPI compared to all 

heuristics and ACO, GA, GA* metaheuristics. However, one should note that the running 

time of the heuristics is negligible when compared with the running time of the 

metaheuristics.  ACO* determines these results in less than two minutes of CPU time on a 

Pentium Dual Core Machine with 4 GB of memory and 120 GB of hard drive using 
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MATLAB R2007b as the programming medium. The CPU time increases with the number of 

jobs and the number of machines. When there are two machines, ACO* and GA*  determine 

the optimal result (i.e., a solution with zero imbalance) almost instantaneously in most of the 

runs.  

 

*********************Insert Table 6 ********************** 

In all experimental settings, the dispatching rules (i.e., h1,..., h9) provide results worse than 

the ACO and GA since both metaheuristics utilize the solutions from dispatching rules as 

initial solutions. In the 20-job case (Table 6), the performance of metaheuristics is 

significantly improved when a local search (2-exchange) is added to improve the solutions. 

The ACO* performs the best with an average ARPI value of 0.427, while GA* improves the 

solution of GA from 1.280 to 1.103. 

 

*********************Insert Table 7 ********************** 

When the number of jobs is 40 (Table 7), we have similar observations as in the case of 20 

jobs. However, when pt/st=10, in the four- and six-machine cases, GA* outperforms ACO*. 

The performance of the metaheuristics in increasing order is ACO* (0.381), GA* (0.464), 

ACO (1.004), and GA (1.198). 

 

*********************Insert Table 8 ********************** 

When the number of jobs is 60 (Table 8), the GA* outperforms ACO* only in the five-

machine case, where processing times are relatively shorter than setup times (i.e., pt/st=0.1). 

Generally, the ARPI values for metaheuristics are GA≤ACO≤GA*≤ACO*. 
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When the number of jobs increases to 40 or 60, observations made for the 20-job case still 

hold. However, one should note that as the number of jobs increases, on average the solution 

quality for heuristics gets closer to the results provided for ACO. However, we still observe 

that heuristics h2, h5, h8, and h9 outperform the other heuristics.  As a result, the CPT 

assignment rule is the best assignment rule when compared with SA or CPT-SA.  

 

Table 9 summarizes the results for the ACO algorithm under different environments. 

Generally, when the number of machines increases, the ARPI value increases. When the 

number of jobs increases, usually the ARPI decreases. The performance of the ACO 

algorithm does not change when the processing time/setup time ratio changes.  

 

************************Insert Table 9 around here************************* 

 

When all problems are analyzed, ACO* performs better when the number of jobs increases. 

In addition, the quality of the solution improves as well (i.e., gets closer to the lower bound of 

zero). However, when the number of machines increases, the problems become more 

difficult. In other words, the ACO algorithm produces results with higher relative imbalance 

values. When the pt/st value increases, we cannot observe a direct relation in the quality of 

the relative imbalance (Table 9).  When the relative performance of each heuristic with 

respect to ACO*, the best known solution, is analyzed, it is observed that when the number of 

machines increases, the relative performance of heuristics improves. This may be due to the 

inability of ACO* to obtain “perfect solutions” (i.e., solutions that have zero imbalance) as 

the number of machines increases.   
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Figure 8 presents box plots for ARPI values of different heuristics and metaheuristic 

algorithms. When the number of jobs increases, the ARPI value decreases significantly for 

h2, h5, and h8. The variability in ARPI increases when the number of jobs increases for h3 

and h4. The metaheuristics, particularly ACO* algorithm,  are quite robust as a function of 

number of jobs. Their performance improve when the processing time/setup time ratio is 

high. In general, when the number of machines increases, the ARPI increases for all 

heuristics. Furthermore, when the number of machines increases, variability in ARPI values 

increases for h2, h5, h8, and the metaheuristics. Note that, in general, h1, h4, and h7, in which 

the assignment rule is SA, have the most variability in results and also perform the worst, 

while h3, h6, and h9 have mediocre performance. Heuristics h2, h5, and h8, which utilize the 

CPT rule as the assignment rule, are the best among all heuristics.  The ACO* algorithm, is 

better than all heuristics. Note that the SA assignment rule is widely used in practice (Fowler 

et al., 2003) for parallel-machine scheduling with setups for the minimum-completion-time 

objective. However, it is observed that this rule cannot be used to solve problems with load 

balancing in parallel-machine scheduling. 

************************Insert Figure 8 around here************************ 

************************Insert Table 10 around here*********************** 

 

When total completion time of the optimal ARPI solutions is analyzed,  the dispatching rules 

and ACO* generally provide better results than other metaheuristics, since all metaheuristics 

were designed to find solutions for the ARPI problem not for the total completion time 

problem. In finding the best solution with ACO* and other metaheuristics, we selected the 

solution with the best total completion time among all alternative solutions available at that 

time (i.e., solutions having the same ARPI value).  
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The quality of the solutions obtained by the heuristics and the ACO algorithm when the 

objective is minimization of total completion time is presented in Table 10. When the output 

is analyzed, the general trend is as follows: as the number of jobs increases, the total 

completion time increases; and when the number of machines increases, the total completion 

time usually decreases.  Results show that the quality of the solutions provided by the ACO 

algorithm has the highest total completion time, but ACO* has improved the total completion 

time very significantly. The heuristics that utilize the setup avoidance rule as the assignment 

rule provide better results compared to other heuristics. It can also  be observed that the 

minimization of total relative imbalance and the minimization of total completion time are 

not equivalent load balancing policies.  

  
7.   CONCLUSIONS 

In this study, a mixed-integer mathematical programming model for scheduling of parallel 

machines with sequence-dependent setups was proposed, where the objective is to minimize 

the average relative imbalance on all machines.  Due to the computational complexity 

involved in solving the mathematical model, heuristics and metaheuristic algorithms were 

developed to generate solutions within a reasonable period of time. Heuristics were also used 

to generate the initial set of solutions for the ant colony optimization algorithm and genetic 

algorithm. Extensive computational experimentation was performed to test the effectiveness 

of the developed methodology over different scenarios. It was observed that the ant colony 

optimization algorithm with local search improves the heuristic and metaheuristics solutions 

significantly. Furthermore, the most promising heuristics are those that utilize the CPT rule as 

the assignment rule. It was observed that the initial order of the assignments does not have a 

significant impact on the total relative imbalance. In addition, computational experimentation 

showed that the results obtained by the ant colony optimization algorithm with local search 

for the PMWBSDS are inferior solutions for the load-balancing problem defined in Yildirim 
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et al. (2007), where the objective is the minimization of the total completion time in the 

presence of load-balancing constraints.    

A direct extension of this research would be to have a multi-objective mathematical 

model in which both minimization of total completion time and minimization of imbalance 

are two objectives to be considered. A multi-objective genetic algorithm approach could be 

developed to solve this problem as part of future research. Another extension would be to 

determine a lower bound to test the effectiveness of the ACO algorithm. A more detailed 

experiment to determine if there is a clear pattern between the parameters of the experimental 

design and the objective could be designed.  
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Figure 1.  Network representation of load-balancing problem on ACO. 
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Figure 2.  Tours for Ant 1 and Ant 2 in ACO. 
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Figure 3.  Pseudocode for ACO algorithm. 

 

 

  

Ant Colony Optimization Algorithm 
STEP 0: Initialize:  

a) Set iteration counter t=0. 
b) Set pheromone level on all edges to 0.  

STEP 1: Construct solutions for each ant    (i.e., for 1    to   ): 

 Generate a tour by adding an edge from tabu  using the following: 
a) With probability q, the node with the maximum pheromone level. 
b) With probability d, a discrete probability distribution with edge 

probability (( , ),( ', '))Pr ( )i k i k t .  

c) With probability r, random selection. 
STEP 2: Local search (Optional) 
STEP 3:     Evaluate the fitness of each solution. 
STEP 4: Keep the best solutions in a list. If not optimal (i.e., ARPI is not zero) and t 

< MaxIterationCount, then update the pheromone levels on the network via 
evaporation and incremental pheromone update processes.   

STEP 5: Set t=t+1.  Go to Step 1. 
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Figure 4.  Pseudocode for the genetic algorithm. 

  

Genetic Algorithm 
STEP 0: Generate an initial population  
STEP 1: Evaluate the fitness value of the chromosomes 
STEP 2: Perform selection operation and give those individual that have better 

fitness values a more chance to survive in the next generation. 
STEP 3: Perform crossover and mutation operations according to probabilities.  
STEP 4: Perform local search (optional) 
STEP 5: Repeat steps 1, 2, 3 and 4 until the GA is run for the predetermined number 

of generations or an optimal solution with zero ARPI value is found 
STEP 5:  Select the best chromosome. 
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 Machine 1 Machine 2 Machine 3 

Jobs 5 8 1 4 10 3 7 6 9 2 

 

Figure 5. Representation of a chromosome 
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Offspring1 1 2 5 4 6 8 10 3 7 9 

 

P1 5 8 1 4 10 3 7 6 9 2 
 

P2 1 2 5 4 6 10 8 7 3 9 

 

Offspring2 5 8 1 4 10 2 6 7 3 9 

 

Figure 6. Crossover operation 
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Offspring 1 2 5 4 6 8 10 3 7 9 

 

Mutated 
Offspring 

1 2 4 6 8 5 10 3 7 9 

 
Figure 7. Mutation operator  
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Figure 8.  Average relative percentage imbalance values for different heuristics.   
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Table 1: Heuristics to minimize load balance in parallel machines with sequence-dependent 
setups 

Assignment Rule 

Ordering Rule SA CPT CPT- SA 

RN 
h1 

RN-SA 
h2 

RN-CPT 
h3 

RN- CPT- SA 

LPT 
h4 

LPT-SA 
h5 

LPT-CPT 
h6 

LPT- CPT- SA 

SPT 
h7 

SPT-SA 
h8 

SPT-CPT 
h9 

SPT- CPT- SA 
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Table 2:  Parameters for generation of processing and setup times 

pt/st Ratio Processing Time Setup Time 

High 0.1=15/150 U[0, 20]+5 U[0, 7]*43 
Moderate 1.0= 50/50 U[0, 20]+40 U[0, 7]*15 

Low 10 = 70/7 U[0, 20]+60 U[0, 7]*2 
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Table 3:  Parameter optimization experimentation design for ACO algorithm 

p q (best) d (probabilistic) r (random) = (1-(q+d)) 

(0.1, 0.3, 0.5) 0.8 (0.1, 0.2) (0.0, 0.1) 
(0.1, 0.3, 0.5) 0.6 (0.1, 0.2, 0.3, 0.4) (0.0, 0.1, 0.2, 0.3) 
(0.1, 0.3, 0.5) 0.4 (0.1, 0.2, 0.3, 0.4) (0.2, 0.3, 0.4,0.5) 

(0.1, 0.3, 0.5) 0.2 (0.1, 0.2, 0.3, 0.4) (0.4, 0.5, 0.6, 0.7) 
 

  



39 
 

Table 4: Optimal (p, q, d, r) parameter combination for ACO algorithm  

Machines 
Jobs 

20 40 60 

2M (0.5, 0.8, 0.1, 0.1) All Combinations Optimum All Combinations Optimum 

3M (0.5, 0.8, 0.1, 0.1) (0.5, 0.6, 0.1, 0.3) (0.3, 0.8, 0.2, 0.0) 

4M (0.5, 0.8, 0.1, 0.1 ) (0.3, 0.2, 0.4, 0.4) (0.1, 0.2, 0.1, 0.7) 

5M (0.1, 0.8, 0.1, 0.1) (0.5, 0.8, 0.1, 0.1) (0.3, 0.8, 0.1, 0.1)

6M (0.1, 0.8, 0.1, 0.1) (0.3, 0.6, 0.2, 0.2) (0.3, 0.4, 0.3, 0.3) 
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Table 5: Optimal (Pc, Pm) parameter combination for GA algorithm  

 
Machines 

 

Jobs 

20 40 60 

2M (0.7, 0.01) (0.9, 0.01) (0.9, 0.01)  

3M (0.9, 0.01) (0.9, 0.01) (0.9, 0.01) 

4M (0.7, 0.01) (0.9, 0.05) (0.9, 0.01) 

5M (0.9, 0.05) (0.9, 0.01) (0.9, 0.05) 

6M (0.9, 0.05) (0.9, 0.05) (0.9, 0.05) 

 

 

  



 
 

Table 6: ARPI values when |J|=20 

pt/st M h1 h2 h3 h4 h5 h6 h7 h8 h9 ACO ACO* GA GA*

0.1 

2 11.495 3.063 9.562 5.169 1.182 14.130 20.124 4.315 15.023 0.094 0.008 0.122 0.033 

3 27.037 3.761 12.192 49.916 4.200 5.100 30.934 14.505 18.721 0.158 0.011 0.787 0.595 

4 51.156 9.513 14.538 55.901 9.245 16.356 47.129 6.212 9.608 0.762 0.139 2.095 1.114 

5 64.971 16.425 16.439 56.785 18.915 12.645 50.683 7.982 15.574 1.933 0.597 3.607 1.753 

6 70.863 18.356 18.341 64.014 26.340 32.287 59.425 24.997 13.614 4.069 0.824 6.400 2.567 

1 

2 43.815 5.322 16.616 17.090 0.781 9.924 20.483 2.641 10.327 0.017 0.006 0.087 0.025 

3 33.025 3.319 8.782 39.073 9.293 13.409 27.547 1.263 17.602 0.194 0.043 0.720 0.362 

4 41.263 16.286 16.675 31.933 15.845 11.750 40.511 11.986 8.662 0.623 0.157 3.001 0.626 

5 25.939 13.584 18.985 38.413 19.373 27.655 21.323 11.505 9.389 1.324 0.427 3.827 1.789 

6 39.092 16.681 16.711 31.248 15.502 16.695 41.210 14.591 16.934 2.571 0.616 4.088 1.560 

10 

2 6.245 0.501 10.888 24.287 0.467 16.977 21.989 0.227 14.730 0.053 0.031 0.064 0.061 

3 4.352 6.090 17.285 17.553 5.111 18.562 38.728 4.470 4.362 0.065 0.021 0.617 0.046 

4 32.061 4.057 17.086 38.505 1.529 14.801 49.011 1.891 2.837 0.213 0.064 0.448 0.091 

5 33.418 8.436 6.578 35.242 5.426 19.376 59.364 1.960 17.119 0.310 0.032 0.647 0.176

6 45.134 15.445 14.091 54.044 17.526 19.848 66.210 12.953 16.152 6.884 3.466 7.873 5.771 

Mean   35.325 9.389 14.318 37.278 10.049 16.634 39.645 8.100 12.710 1.285 0.429 2.292 1.105 
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Table 7: ARPI values when |J|=40 

pt/st M h1 h2 h3 h4 h5 h6 h7 h8 h9 ACO ACO* GA GA*

0.1 

2 21.728 1.960 2.624 11.122 0.718 6.419 13.077 3.629 10.819 0.006 0.005 0.040 0.007 

3 17.628 2.383 12.549 14.878 2.361 8.530 31.798 4.498 3.006 0.128 0.025 0.471 0.053 

4 40.955 5.194 11.740 34.049 6.203 10.338 37.988 6.567 10.879 0.902 0.087 1.021 0.290 

5 33.556 6.097 11.008 44.260 10.368 13.977 29.731 11.487 9.231 1.952 0.404 2.608 0.520 

6 26.817 13.708 10.617 50.657 4.824 16.462 44.668 17.074 10.861 2.153 1.089 2.549 1.631 

1 

2 23.233 1.951 13.149 8.641 0.276 9.924 7.308 3.304 0.211 0.086 0.004 0.017 0.006 

3 24.523 4.829 6.496 21.458 1.837 10.428 33.490 3.676 8.499 0.106 0.023 0.173 0.069 

4 15.270 10.640 14.398 15.904 6.386 8.464 29.028 4.927 12.262 0.856 0.135 0.514 0.204 

5 36.448 8.206 15.917 24.939 9.121 8.427 9.743 2.530 7.297 0.868 0.124 0.996 0.440 

6 37.265 11.709 17.645 23.752 16.143 10.635 41.562 5.844 14.594 3.748 1.036 4.338 1.665 

10 

2 7.809 0.299 3.747 31.721 0.927 0.352 16.358 0.972 12.296 0.004 0.011 0.095 0.024 

3 16.056 3.145 15.924 16.554 3.629 17.231 19.784 0.276 14.790 0.084 0.034 0.178 0.039 

4 28.927 1.402 16.228 23.057 0.732 12.058 27.882 1.197 15.562 0.173 0.065 0.353 0.083 

5 38.891 3.696 10.773 32.598 2.907 10.004 17.863 0.965 15.574 0.322 0.075 0.823 0.110 

6 34.556 6.373 14.119 40.342 6.393 16.047 18.144 4.662 12.621 3.741 2.680 3.800 1.973

Mean   26.911 5.439 11.796 26.262 4.855 10.620 25.228 4.774 10.567 1.009 0.387 1.198 0.474 
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Table 8: ARPI values when |J|=60 

pt/st M h1 h2 h3 h4 h5 h6 h7 h8 h9 ACO ACO* GA GA*

0.1 

2 22.466 0.595 14.545 26.500 0.141 13.379 29.935 1.672 7.631 0.042 0.007 0.040 0.009 

3 21.545 2.406 14.552 39.478 3.186 7.993 40.359 1.712 13.592 0.097 0.009 0.220 0.034 

4 26.794 4.540 12.825 41.497 2.804 7.470 29.940 1.875 9.167 0.323 0.098 0.389 0.132 

5 28.358 3.112 12.775 43.979 4.933 9.595 28.706 6.366 13.495 1.718 0.659 1.019 0.343 

6 31.914 9.259 12.878 41.159 5.692 13.008 49.726 7.076 11.502 3.519 0.454 3.283 0.483 

1 

2 14.595 0.109 2.788 22.428 1.236 2.617 1.715 0.378 9.968 0.022 0.008 0.022 0.009 

3 23.637 1.761 2.831 33.118 2.892 6.025 12.870 2.590 5.903 0.101 0.021 0.116 0.059 

4 24.800 1.789 6.994 15.867 5.119 10.650 44.746 1.443 11.537 0.638 0.084 0.260 0.157 

5 38.764 1.976 14.831 42.295 6.461 16.691 38.660 2.754 15.414 1.061 0.390 1.242 0.563 

6 46.006 4.717 12.028 51.472 5.787 9.966 34.218 4.964 8.391 1.562 0.347 1.603 0.455 

10 

2 5.308 0.529 1.926 20.816 1.318 14.409 0.635 1.380 0.673 0.027 0.007 0.019 0.013 

3 17.963 2.644 2.991 18.209 0.853 10.854 28.907 0.666 11.350 0.064 0.005 0.182 0.016 

4 21.414 2.629 9.862 23.205 1.842 11.923 12.708 1.346 14.544 0.456 0.011 0.578 0.022

5 34.163 1.584 12.799 17.460 1.299 10.060 25.469 1.097 13.225 0.217 0.056 0.340 0.084 

6 30.414 3.091 11.406 31.363 2.206 9.349 37.532 2.635 14.734 1.036 0.276 1.164 0.453 

Mean   25.876 2.716 9.735 31.256 3.051 10.266 27.742 2.530 10.742 0.725 0.162 0.698 0.189 
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Table 9: Performance of ACO algorithm under different conditions 

pt/st 0.1 1 10 
job\M 2 3 4 5 6 2 3 4 5 6 2 3 4 5 6 

20 0.008 0.011 0.139 0.597 0.824 0.006 0.043 0.157 0.427 0.616 0.031 0.021 0.064 0.032 3.466 

40 0.005 0.025 0.087 0.404 1.089 0.004 0.023 0.135 0.124 1.036 0.011 0.034 0.065 0.075 2.680 

60 0.007 0.009 0.098 0.659 0.454 0.008 0.021 0.084 0.390 0.347 0.007 0.005 0.011 0.056 0.276 
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Table 10: Total completion time for different heuristics 

Jobs M h1 h2 h3 h4 h5 h6 h7 h8 h9 ACO ACO* GA GA*

20 

2 1498 1489 1528 1483 1560 1484 1455 1485 1469 1617 1444 1553 1564 
3 1428 1505 1487 1432 1566 1487 1428 1473 1501 1533 1456 1540 1518 
4 1449 1482 1470 1433 1545 1469 1419 1476 1473 1538 1449 1544 1529 
5 1435 1472 1463 1429 1568 1483 1406 1535 1472 1510 1471 1543 1527 
6 1410 1444 1475 1453 1536 1467 1404 1499 1486 1504 1527 1519 1524 

40 

2 2942 3069 2958 2950 2974 2935 2875 2996 2982 2983 2779 3019 3020 
3 2826 3055 2916 2943 3044 2861 2840 2940 2956 3034 2781 3031 3033 
4 2844 2965 2874 2836 2994 2865 2822 2971 2870 3069 2775 3042 3031 
5 2824 2938 2915 2776 2929 2831 2806 3031 2902 2995 2776 3021 3046 
6 2729 3019 2918 2771 3069 2942 2840 3034 2868 3009 2778 3002 3026 

60 

2 4358 4495 4417 4488 4564 4426 4304 4594 4430 4576 4207 4576 4580 
3 4386 4427 4372 4445 4684 4317 4350 4435 4422 4511 4205 4596 4580 
4 4354 4465 4483 4261 4470 4396 4296 4570 4410 4665 4202 4569 4595 
5 4282 4582 4396 4184 4397 4259 4280 4590 4332 4509 4201 4587 4607 
6 4259 4636 4340 4322 4591 4396 4377 4439 4284 4516 4196 4558 4600 

 
 


