

Wichita State University Libraries
SOAR: Shocker Open Access Repository

Mehmet Bayram Yildirim Industrial Engineering

An Ant Colony Optimization Algorithm for Load Balancing in Parallel
Machines with Sequence Dependent Setup Times

Timur Keskinturk
Department of Quantitative Methods, Faculty of Business Administration, Istanbul University

Mehmet B. Yildirim
Wichita State University, bayram.yildirim@wichita.edu

Mehmet Barut
Barton School of Business, Wichita State University

Recommended citation
Keskinturk, Timur., Yildirim, Mehmet B. and Mehmet Barut. 2010. An Ant Colony Optimization
Algorithm for Load Balancing in Parallel Machines with Sequence Dependent Setup Times. Computers &
Operations Research, In Press. doi:10.1016/j.cor.2010.12.003

This paper is posted in Shocker Open Access Repository
http://soar.wichita.edu/dspace/handle/10057/3501

AN ANT COLONY OPTIMIZATION ALGORITHM FOR LOAD
BALANCING IN PARALLEL MACHINES WITH SEQUENCE-

DEPENDENT SETUP TIMES

Timur Keskinturk,† Mehmet B. Yildirim, 1

Mehmet Barut¥

† Department of Quantitative Methods, Faculty of Business Administration
Istanbul University

Istanbul 34850, Turkey

Department of Industrial and Manufacturing Engineering
Wichita State University
Wichita, KS 67260, USA

¥ Department of Finance, Real Estate, and Decision Sciences

Barton School of Business
Wichita State University
Wichita, KS 67260, USA

Abstract: This study introduces the problem of minimizing average relative percentage of
imbalance (ARPI) with sequence-dependent setup times in a parallel-machine environment.
A mathematical model that minimizes ARPI is proposed. Some heuristics, and two
metaheuristics, an ant colony optimization algorithm and a genetic algorithm are developed
and tested on various random data. The proposed ant colony optimization method
outperforms heuristics and genetic algorithm. On the other hand, heuristics using the
cumulative processing time obtain better results than heuristics using setup avoidance and a
hybrid rule in assignment.

Keywords: Load Balancing, Parallel-machine Scheduling, Sequence-Dependent Setups, Ant
Colony Optimization, Genetic Algorithm, Heuristics

1 Corresponding Author, Email: Bayram.yildirim@wichita.edu, Phone: +1-316-978 3426, Fax: +1-316-978 3742

2

AN ANT COLONY OPTIMIZATION ALGORITHM FOR LOAD
BALANCING IN PARALLEL MACHINES WITH SEQUENCE-

DEPENDENT SETUP TIMES

Timur Keskinturk,† Mehmet B. Yildirim, 2

Mehmet Barut¥

† Department of Quantitative Methods, Faculty of Business Administration
Istanbul University

Istanbul 34850, Turkey

Department of Industrial and Manufacturing Engineering
Wichita State University
Wichita, KS 67260, USA

¥ Department of Finance, Real Estate, and Decision Sciences

Barton School of Business
Wichita State University
Wichita, KS 67260, USA

Abstract: This study introduces the problem of minimizing average relative percentage of

imbalance (ARPI) with sequence-dependent setup times in a parallel-machine environment.

A mathematical model that minimizes ARPI is proposed. Some heuristics, and two

metaheuristics, an ant colony optimization algorithm and a genetic algorithm are developed

and tested on various random data. The proposed ant colony optimization method

outperforms heuristics and genetic algorithm. On the other hand, heuristics using the

cumulative processing time obtain better results than heuristics using setup avoidance and a

hybrid rule in assignment.

Keywords: Load Balancing, Parallel-machine Scheduling, Sequence-Dependent Setups, Ant

Colony Optimization, Genetic Algorithm, Heuristics

1 Corresponding Author, Email: Bayram.yildirim@wichita.edu, Phone: +1-316-978 3426, Fax: +1-316-978 3742

3

1. INTRODUCTION

This paper presents a mathematical model for a parallel-machine problem with sequence-

dependent setups where the goal is to minimize total relative imbalance. Rajakumar et al.

(2004, 2006, and 2007) observed that the minimization of imbalance may reduce idle time

and work in process, maximize throughput, minimize the finished goods inventory, and lower

operating expenses. Furthermore, the impact of the machine with the highest workload,

representing a bottleneck that prevents achieving high system throughput, may be reduced by

utilizing all machines as equally as possible.

Workload balancing has several applications. Aubry et al. (2008) pointed out the applications

of workload balancing in the semiconductor manufacturing industry. Duman et al. (2008)

showed how a balanced schedule can improve productivity in the manufacturing of aluminum

on parallel continuous casting lines. Yildirim et al. (2007) provided examples from the

service industry (such as nurse scheduling) and production planning in a machine shop.

Hillier and Brandeau (2001) illustrate another application for workload balancing in printed

circuit board assembly. Assigning tasks to workers in an office or shop floor is another viable

example. To maintain the morale of the workforce, it is of utmost important to keep the

assignment of jobs to employees working in the same area as equally balanced as possible

(i.e., assign approximately equal workload) to minimize tension on the office or shop floor.

The goal of workload balancing is to distribute jobs/tasks to resources in such a way that the

relative imbalance is minimized, and the utilization of resources is approximately equal.

Rajakumar et al. (2004, 2006, and 2007) defined workload balancing as the minimization of

total relative imbalance (the ratio of the difference between maximum completion time on all

machines and individual completion time on a given machine, and the maximum completion

4

time). Duman et al. (2008) and Yildirim et al. (2007) achieved workload balance by ensuring

that the completion times on individual machines are within a certain percentage of each

other while minimizing the total completion time on all machines. Aubry et al. (2008)

achieved load balancing by having the same completion time on each machine.

Workload balancing on parallel machines has been studied in various environments. For

example, Rajakumar et al. (2004, 2006, and 2007) considered the case where jobs have

deterministic processing times on identical parallel machines. Furthermore, Rajakumar et al.

(2007) analyzed the impact of having precedence constraints on workload balancing. Aubry

et al. (2008) studied the problem on parallel multi-purpose machines with machine-dependent

setups. Yildirim et al. (2007) and Duman et al. (2008) investigated workload balancing on

unrelated parallel machines in the presence of sequence-dependent setups. At all settings and

environments, the workload-balancing problem is closely related to difficult-operation

research problems, such as the set-partitioning problem (Rajakumar et al., 2004, 2006, and

2007; Aubry et al., 2008) or vehicle-routing problems (Yildirim et al., 2007; Duman et al.,

2008), which are strongly NP-hard problems. The researchers of this paper studied the

workload-balancing problem using sequence-dependent setups, with the objective of

minimizing total relative imbalance. In other words, the goal was to assign jobs to different

machines and determine the sequence of jobs to minimize average relative percentage

imbalance.

Chen and Powell (2003) observed that solving a problem for non-identical parallel machines

for any objective is more complex than for identical parallel machines, and the sequence-

dependent setup time will further complicate the problem. Allahverdi et al. (1999) provided a

review of scheduling problems with setups. Fowler et al. (2003) analyzed parallel-machine

5

problems having makespan, total weighted completion time, and total weighted tardiness

objectives with sequence-dependent setups. Due to the complexity involved in terms of

formulation and computational time, several methods have been proposed to solve parallel-

machine problems with sequence-dependent setups: dynamic programming (Gascon and

Leachman, 1998), branch and bound (Dietrich and Escudero, 1989), and heuristics (Pinedo,

1995). Tamaki et al. (1993) proposed a genetic algorithm to solve unrelated parallel-machine

scheduling problems with resource constraints. Yalaoui and Chu (2003) and Tahar et al.

(2006) proposed a linear programming approach for minimization of completion time in the

presence of sequence dependent setup times and job splitting. Chen (2006) used heuristics

and simulated annealing for unrelated parallel machines with a mean tardiness objective as

well as secondary resource constraints and setups.

The contributions of this paper can be summarized as follows: (1) first, we present a

mathematical model to formulate the load balancing of a parallel scheduling problem with

sequence-dependent setups when the objective is minimization of total relative imbalance; (2)

then, we propose an ant colony optimization metaheuristic to solve the resulting problem; and

(3) finally, we analyze the performance of this heuristic under various conditions and

compare its performance with nine simple dispatching rules (very similar to those used in the

load-balancing literature) and a genetic algorithm. We also present results on the performance

of the simple dispatching rules.

The organization of this paper is as follows: In the next section (Section 2), we present the

notation utilized in this paper and propose a mixed-integer mathematical model that

minimizes total relative imbalance. Section 3 and 4 present an ant colony optimization

algorithm and a genetic algorithm for obtaining good results in a reasonable amount of time.

6

Section 5 presents heuristics to solve this problem. The experimental setup is followed by

computational experimentation.

2. PROBLEM DEFINITION

In the parallel-machine scheduling problem with workload balancing with sequence-

dependent setups, all problem parameters are assumed to be deterministic. K is the set of

parallel machines, and |K| denotes the number of machines, i.e., the cardinality of set K.

Similarly, J is the set of jobs that needs to be processed on these machines. Kj is the subset of

machines on which job j can be processed, and Jk is the subset of jobs that can be processed

on machine k. Jobs are available at time zero. If job i precedes job j on machine k, then there

is a sequence-dependent setup time of Sijk between jobs i and j. Let pik be the processing time

of job i on machine k. No preemption of jobs is allowed. Each job is processed on only one

machine and only once.

In this problem, to maximize potential throughput, it is assumed that all feasible schedules are

non-delay schedules. In other words, no machine is kept idle other than during the required

sequence-dependent setups when there is an operation available for processing, so there is no

forced idleness.

Let kC be the total completion time of all jobs assigned to machine k. The imbalance is

defined as max kC C , where the minimization objective will force maxC to have the value of

maximum completion time of jobs on all parallel machines, i.e.,

max max .Kk kC C

The relative imbalance on machine k is the ratio of imbalance and the maximum completion

time on all machines, i.e.,

7

max

max

relative imbalance = .k
k

C C

C



Below is a mathematical program to minimize average relative percentage imbalance with

sequence-dependent setup times in an unrelated parallel machine. The goal of the

mathematical model for parallel-machine workload balancing with sequence-dependent setup

(PMWBSDS) is to schedule jobs on unrelated parallel machines to minimize the average

relative percentage of imbalance (ARPI).

max

max

1
min 100k

k K

C C

K C

 
  

 


(1)

Mathematically, the total completion time on machine k,
kC is defined as

k k

k ik ik ijk ijk
i J i J j J

C y p x s k K
  

    (2)

where

1 if job is assigned to machine

0 otherwiseik

i k
y 





and

1 if job is the immediate predecessor of job on machine

0 otherwiseijk

i j k
x 





Constraint (3) ensures that the maximum workload is greater than or equivalent to individual

workloads.

max kC C k K  (3)

Constraint (4) ensures that each job is assigned to a processing line.

1
i

ik
k K

y i J


  (4)

Constraint (5) guarantees that a job cannot precede another job on machine k unless it has

been assigned to machine k.

8

 , ,
ijk ik i k

x y i J k K j J    (5)

Constraint (6)/constraint (7) ensures that a job must be before/after another job on a

production line.

 ,
k

ijk ik k
i J

x y k K j J


   (6)

 ,
k

ijk ik k
j J

x y k K i J


   (7)

Constraint (8) represents sub-tour elimination constraints, which ensure that a job cannot be

the immediate predecessor or successor of two or more different jobs at the same time.

' '

' '| | 1
k k

ijk k k k

i J j J

x J J J
 

   (8)

Note that any solution with a zero ARPI value is optimal. The relationship of PMWBSDS

with what is in the literature is as follows:

 In Yildirim et al. (2007) and Duman et al. (2008), the objective function is

minimization of the total completion time on each machine, i.e.,

min .total k
k K

C C


 

Furthermore, balancing the workload is achieved by having the following constraints:

1 1
(1) and (1) for

| | | |
 k total k totalC C C C k K

K K
     



where α is the level of tolerance above and below the average workload. This problem

is very similar to vehicle-routing problems with load-balancing constraints. When

there is one machine, the problem reduces to 1|Sij|Cmax, which is NP-complete.

 When Sijk=0, i.e., there is no sequence-dependent setups, and PMWBSDS reduces to

the problem defined by Rajakumar et al. (2004, 2006).

 When there are machine-dependent setups, i.e., Sik =Sijk and there is a constraint that

enforces all machines to have the same completion time, i.e., kC is constant then the

9

problem reduces to the one proposed by Aubry et al. (2008). Aubry et al. prove that

this problem is NP-complete by reducing the 3-partioning problem into this problem.

The PMWBSDS problem is closely related to the set partitioning problem: PMWBSDS aims

to partition jobs into subsets (i.e., assign jobs to machines) and then sequence the jobs in such

a way that all machines have the same completion time. However, since there are sequence-

dependent setups between jobs, one must determine the “correct completion time” while

having a non-delay schedule in order to achieve “zero” relative imbalance, if possible.

PMWBSDS has an exponential number of possible solutions. This motivated us to develop

heuristics, an ant colony optimization algorithm and a genetic algorithm to find good

solutions in a reasonable amount of time.

3. ANT COLONY OPTIMIZATION FOR IDENTICAL PARALLEL-MACHINE

SCHEDULING

This study proposes an ant colony optimization for parallel-machine scheduling with load

balancing and setups algorithm (or simply ACO algorithm) to solve the PMWBSDS problem

defined in section 2. The ACO algorithm is a metaheuristic that can be used to solve complex

optimization problems (Dorigo and Gambardella, 1996). The ACO algorithm is developed

by the inspiration of ants’ ability to find the optimal (shortest) route between their nests and

target food locations. In the presence of alternative routes, ants initially spread out to each

route equally; however, after a certain period of time, they converge to the optimal route

since there is more pheromone on shorter routes when compared to longer routes as a result

of a higher number of trips occurring on shorter routes in a unit of time.

10

In standard ACO, the ants’ route preferences depend on the amount of pheromone, which is

determined by the usage frequency of the matching route. Shorter distance to the destination

(i.e., better objective function value) results in greater pheromone level. The paths that

correspond to potential solutions have pheromone level as a function of the route

performances. Pheromone update has two main elements: evaporation of the pheromone on

all of the routes at a certain rate, and keeping the amount of pheromone on the routes that the

ants have already passed (i.e., the past solutions) inversely proportional to the total relative

imbalance level. The evaporation ratio causes a reduction in the importance of the previous

solutions. A pheromone increase that is inversely proportional to the fitness of the route

ensures the importance of the fine solutions (Dorigo and Gambardella, 1997).

In load balancing in parallel machines with the sequence-dependent setups problem, the goal

is to assign and sequence |J| jobs over |K| machines to minimize the total imbalance. To solve

PMWBSDS using a metaheuristic, two decisions should be made: first, determining the

assignment of jobs to machines, and then determining the order of jobs in order to obtain a

good solution that will minimize the relative imbalance.

Construction of Graph

The graph that is used in ACO is generated as follows: jobs are represented as supernodes

(which can also be defined as node clusters). Each supernode has |K| nodes, which represent

the machines on which each job can be processed. The nodes on each supernode are not

connected. However, every node in a super node is connected to all other nodes in other

supernodes. For the sake of completeness, a dummy node, which can be viewed as the ant’s

nest (i.e., the start and end point of an ant’s tour), is defined. This dummy node is connected

to every other node on the graph. As a result, the graph has one dummy node, |J| supernodes,

11

and |J||K| nodes. The total number of edges are (|J||K|)2. On this graph, to construct a solution,

the artificial ant travels to each supernode (i.e., visits any node [machine] on that supernode)

and then returns back to the dummy node (i.e., completes the tour on the graph). This tour

spans |J|+1 edges. When an ant completes a tour, the order of visiting each supernode yields

the order of assignment of jobs to the machines. Furthermore, the node visited at each

supernode determines the assignment of a job to a machine.

************************Insert Figure 1 around here*************************

An illustration for graph construction is given in Figure 1. In this example there are three jobs

and two machines. In the graph, the jobs (supernodes) are represented by rectangles. The

machines on which each job can be processed are represented by circles (nodes). The nodes

in a rectangle are not connected. The dummy node (node 0) is connected to any other node on

the graph. The goal of an ant is to visit all of the rectangles using the edges defined on the

network and return back to the dummy node. This tour corresponds to a solution for

PMWBSDS.

************************Insert Figure 2 around here*************************

To illustrate this route construction, consider Figure 2, where there are five jobs and three

machines. The path of Ant 1, represented by red dotted arcs, is (0), (1, 3), (3, 1), (2, 2), (4,1),

(5, 3), (0), where (i, k) is (job, machine). This route results in the following solution: on

machine 1, first job 3 and then job 4 are processed. On machine two, only job 2 is processed.

Finally on machine three, first job 1 and then job 5 are processed. Similarly, artificial Ant 2’s

tour (represented by the solid line) results in the following solution: on machine 1, job 2 and

then job 1 are processed. Machine 2 processes job 5, whereas machine 3 processes job 4 and

then job 3.

12

Outline of Ant Colony Optimization Algorithm

In the ACO algorithm, after the construction of the graph, at each iteration, artificial ants

travel over the graph to find routes that correspond to better solutions. Upon completion of an

iteration, i.e.,  ants complete tours of |J| supernodes, the amount of pheromone trail on each

edge is recalculated according to the quality of solutions obtained during that iteration.

A feasible order and assignment is obtained when an ant visits all of the supernodes. In order

to complete a tour (i.e., find a solution to the PMWBSDS problem), at any given node, an ant

must decide what node to visit next.

For any ant , the set of candidate nodes that may be visited in the remainder of the tour are

defined as a tabu list. In tabu  , those jobs (supernodes) that have been visited (i.e., the jobs

that have been assigned already) are excluded from the choice through the use of a tabu list.

Let ((,),(', ')) ()i k i k t be the artificial pheromone trail on an arc from (,)i k to (', ')i k at iteration t.

Similarly, ((,),(', ')) ()i k i k t is the incremental pheromone amount, which is found as a function

of the fitness of the solutions that are found by all ants at iteration t. Initially, the pheromone

level on each edge is set to an arbitrary but small level of 0. After an iteration is completed,

the level of pheromone level on each arc is updated.

Let ()ARPI t be the average relative percentage imbalance for the solution obtained by ant

 at iteration t. Then, after iteration t is completed, the pheromone level on ant ’s path is

updated using the following formula:

13

((,),(', '))

1
 if ant travels on edge ((,), (', '))

()()

0 otherwise
i k i k

i k i k
ARPI tt  



  


Note that since the best objective function value for the load-balancing problem is zero, when

a solution with zero ARPI is obtained, then the ant colony algorithm stops. The overall

change in the pheromone level as a result of the ants (new solutions) is calculated as

((,),(', ')) ((,),(', '))
1

() ()i k i k i k i kt t



 




  

The total amount of pheromone level at any edge on the network is

((,),(', ')) ((,),(', ')) ((,),(', '))(1) (1) () ()i k i k i k i k i k i kt p t t     

where p is an evaporation rate that represents the evaporation of the trail between iteration t

and t+1. Before the algorithm starts, the pheromone level on arcs that correspond to the

heuristic solutions is updated.

Selection of the next node, which has not been visited yet, can be made in three ways:

(a) With probability q, select the node that has the maximum pheromone amount,

i.e.,

 ((,),(,))
(,)

(', ') arg max ()
i k i k

i k tabu

i k t





   

(b) With probability d, select the node with respect to a discrete probability

function, which is a function of pheromone trails on all edges, i.e.,

((,),(', '))

((,),(,))((,),(', '))
(,)

()
, if (,)

()Pr ()

0, otherwise

i k i k

i k i ki k i k
i k tabu

t
i k tabu

tt











         





14

 where ((,),(', '))Pr ()i k i k t is the transition probability from node (,)i k to node (', ')i k

for the  -th ant.

(c) With probability r, select the next node randomly from the tabu list. The random

selection helps in diversifying the solutions.

Note that q+d+r=1.

The pseudocode for the ACO algorithm is summarized in Figure 3. To improve the

performance of the algorithm, after each iteration, a first improvement local search procedure

can be utilized (ACO*): the 2-exchange heuristic is used to switch the positions of two jobs,

either on the same machine or on different machines. If the exchange improves the current

solution, it is kept. At each iteration, |J|2 exchanges is performed.

************************Insert Figure 3 around here*************************

4. A GENETIC ALGORITHM TO SOLVE THE PMWBSDS PROBLEM

Genetic algorithms mimic the process of evolution in order to solve complex combinatorial

problems, and have been applied widely to parallel-machine problems. In each generation, a

genetic algorithm is capable of producing and maintaining a set of feasible solutions (Fowler

et al., 2003), maintaining a population of candidate solutions, and evaluating the quality of

each candidate solution according to the problem-specific fitness function. New candidate

solutions are created by selecting relatively fit members and recombining them through

various genetic operators (crossover, mutation and selection). The pseudo-code of the genetic

algorithm is presented in Figure 4, and then the components of the proposed genetic

algorithm are explained in detail.

************************Insert Figure 4 around here*************************

15

Representation (Coding): Our implementation includes a super chromosome of size |J|,

which is composed of sub-chromosomes that represent the sequence of jobs on each machine

(see Figure 5 for a problem involving ten jobs on three machines). First jobs from the first

machine are listed in the scheduled order on the super chromosome, followed by jobs on

machine 2 through machine |K|. In another array, is kept the information on how many jobs

are scheduled on each machine (e.g., for the solution in Figure 5, the array will be [3,4,3], i.e.

three jobs on machine 1, four jobs on machine 2 and three jobs on machine 3).

***********************Insert Figure 5 around here*************************

Initialization: Fowler et al. (2003) reported that assigning jobs based on some pre-

determined rules may provide better solutions and reduce computational time than generating

random solutions. Hence, an initial set of solutions includes solutions from the proposed

heuristics and random solutions.

Evaluation of Fitness Function: The fitness function f for a chromosome  to penalize the

objective function severely can be calculated as a function of the objective function value as

 f ()ARPI ARPI
 

where ARPI is the average relative percentage imbalance of the solution/chromosome  .

Selection: The selection model should reflect nature's survival of the fittest. Normally, in a

genetic algorithm, chromosomes with a better fitness value will receive more chances to

survive in the next generations. In this paper, the roulette wheel system is used to select

parents for the next generation (Ip et al., 2000).

16

Crossover: Once parents are selected, the crossover operation is applied with a probability of

Pc to generate two new offspring solutions. The type of crossover employed in our genetic

algorithm implementation is single point crossover: Two parent strings are selected randomly

from the population. A random number between 2 to |J|-1 is generated (where |J| is the length

of the chromosome) to determine the crossover point. When crossover is finished, the genes

before the crossover point in the first chromosome are the first part of the first child

chromosome. The second part of the first child chromosome is generated by checking the

genes from the second chromosome one by one and adding those genes that are not yet in the

child chromosome (Figure 6). Similarly, the 2nd child chromosome is generated.

************************Insert Figure 6 around here*************************

Mutation: The mutation operator moves a gene to another position on the chromosome

randomly, with a probability equal to the mutation probability, Pm. If the new position is on

the same machine, then only the order of jobs changes. However, if the gene is moved to

another machine, the number of jobs and order of jobs on both machines may change. In

Figure 7, job 5 on machine 1 is moved to the last job on machine 3, and the number of jobs is

increased to three.

***********************Insert Figure 7 around here*************************

Local Search (optional): After each iteration, similar to ACO search algorithm, a first

improvement local search, a 2-exchange heuristic, is used to switch positions of the two jobs,

either on the same machine or on different machines. If the exchange improves the current

solution, it is kept. At each iteration, |J|2 number of exchanges is performed.

Two variants of the genetic algorithm without (GA) and with local search (GA*) are utilized

to solve the PMWBSDS problem.

17

5. OTHER METHODS TO SOLVE THE PMWBSDS PROBLEM

In order to provide quick solutions to the PMWBSDS problem, heuristics can be utilized.

Although heuristics/dispatching rules cannot guarantee optimality, they are usually easier to

implement, and they find solutions in less time compared to finding the optimal solution via

methods such as branch and bound, or good solutions via metaheuristic methods. To solve the

parallel-machine workload-balancing problems, several heuristics have been proposed. For

example, Rajakumar et al. (2004, 2006) utilized Shortest Processing Time (SPT), Longest

Processing Time (LPT) dispatching rules to schedule jobs on machines for the workload-

balancing problem in the absence of setups. When there are sequence-dependent setups,

Yildirim et al. (2007) proposed several dispatching rules that minimize the total completion

time while considering the workload balancing constraint.

In this section, several heuristics similar to those of Yildirim et al. (2007) are presented to

minimize the average relative imbalance in the presence of sequence-dependent setups. In

these heuristics, jobs are ordered with respect to an ordering criterion, and then they are

assigned to a machine based on an assignment criterion.

The criteria utilized to order jobs are as follows:

Random (RN): The order of jobs is random.

Longest Processing Time (LPT): Jobs are ordered in non-increasing processing

time.

Shortest Processing Time (SPT): Jobs are ordered in non-decreasing processing

time.

18

After the order is determined, then jobs selected from the ordered list are assigned to

machines using the following assignment rules:

Setup Avoidance (SA): This rule assigns the job to the machine that causes the least

setup time. Fowler et al. (2003) noted that the SA rule is a commonly used rule by scheduling

practitioners for problems with sequence-dependent setups when the objective is to minimize

the makespan.

Cumulative Processing Time (CPT): Jobs are assigned to the machine that yields

the least cumulative workload.

Hybrid Cumulative Processing Time and Setup Avoidance (CPT-SA): At any

iteration, if the imbalance is within  , then the SA rule is used. Otherwise, CPT is applied.

In the case of a tie, jobs are assigned to the lower index machine. Note that, for any heuristic,

the imbalance for machine k is calculated as

max

1 k
k

C

C
  

There are three ordering rules and three assignment rules. A combination of an “order” rule

and an “assignment” rule results in nine heuristics to minimize the imbalance. As can be seen

in Table 1, each heuristic, hi, has a name, which consists of an ordering rule and an

assignment rule. For example, with h4, the LPT-SA heuristic orders the jobs via the longest

processing time rule and then assigns jobs to the machines using the setup avoidance rule.

************************Insert Table 1 around here*************************

6. COMPUTATIONAL EXPERIMENTATION

This section discusses how to generate different scenarios to test the effectiveness of the

proposed heuristics in environments of two to six machines. The ACO algorithm, GA, and

19

heuristics are programmed using MATLAB R2007b. Below is a description of the

experimental design, which is followed by results and discussion.

6.1 EXPERIMENTAL DESIGN

Generation of Experimental Data

The experimental setup considers the following factors: number of machines—two to six

machines (2M, 3M, 4M, 5M, and 6M); number of jobs (20, 40, and 60); and processing

time/setup time ratio ( : low [ =0.1], medium [ =1], and high [ =10]). As a result, the

total number of scenarios is 45. For each scenario, we generated 20 problems and ran each

instance ten different times. Nine solutions from heuristics h1,…, h9 are also considered in

the set of initial solutions for both ant colony optimization and genetic algorithms.

The job data, processing time, and setup time are generated using a method similar to

that of Fowler et al. (2003). As shown in Table 2, when the processing time/setup time ratio

(pt/st) is high (i.e., pt/st=0.1), then the processing times are generated using a uniform

distribution with a mean of 10 (U[0, 20]+5), while the setup time is generated using a

uniform distribution that has an expected value of 150. The setup time matrix is asymmetric

(i.e., sijk may not be equal to sjik).

************************Insert Table 2 around here*************************

An initial experimentation is performed to determine the best imbalance factor that should be

utilized for heuristics h3, h6, and h9, where the assignment rule is CPT-SA. The maximum

imbalance factor is chosen to be 20%.

20

Fine Tuning of Parameters for ACO Algorithm

Selection of good parameters can play a vital role in the running time and effectiveness of the

ACO algorithm. In our ACO algorithm implementation, the ant population size is 20, and the

initial pheromone level is 10-8. In order to determine the best combinations for p, q, d, and r,

and also to investigate the impact of these parameters on ACO algorithm performance, an

experimental design is performed. The ACO algorithm is run using p, q, d, and r at the levels

summarized in Table 3.

************************Insert Table 3 around here*************************

The experimental design summarized in Table 3 is used to solve “difficult” problems with a

pt/st ratio of 10, while keeping the number of machines constant. For each number of jobs

(20, 40 and 60) and machine combination (2, 3, 4, 5, and 6), the experimentation is performed

over 15 randomly generated problems using 42 combinations of (p, q, d, r) parameters. In all

experiments, the ACO algorithm is run for 1,000 iterations and each experiment is run 100

times. The performance of a particular combination is determined by the average

performance over 15 problems and 100 runs. The optimal parameter set for a problem class is

the parameter combination that yields the best overall performance (see Table 4). For

example, on a 40-job problem with two machines, the ACO algorithm finds good results with

all combinations of (p, q, d, r). The best combination for 40-job problems on five machines is

by having an evaporation rate of 0.5 while selecting the edge with the maximum pheromone

level 80% of the time.

************************Insert Table 4 around here*************************

21

Fine Tuning of Parameters for GA Algorithm

The crossover probability (Pc) and mutation probability (Pm) of the GA proposed in section

4 is obtained using a similar experimental design utilized for the ACO algorithm parameter

tuning. The initial population is from the nine heuristics and also randomly generated. GA

has a population size of 20, and total number of iterations of 2,000.

The GA algorithm is run using Pc of 0.5, 0.7, and 0.9 and Pm of 0.005, 0.010, and 0.050. The

experimentation is performed over the same data set, number of iterations and runs as in the

ACO parameter fine tuning. The optimal combination of these parameters is summarized in

Table 5 for different number of jobs and machines combinations. For example, for 40 jobs 5

machines, the optimal crossover probability is 0.9 and mutation probability is 0.01.

************************Insert Table 5 around here*************************

Note that we have performed fine tuning process for ACO and GA only on 20, 40 and 60

jobs.

6.2 RESULTS AND DISCUSSION

Heuristics h2, h3, h5, h8, and h9 also provide relatively good results for the 20-machine case.

In these heuristics, the utilized assignment rules are CPT and CPT-SA. Among the

heuristics, the best performance is obtained in h5, where the ordering rule is LPT. The

heuristics (h1, h4, and h7) that utilize the SA assignment rule, which provides good results in

minimization of completion time in the presence of sequence setups (Fowler et al., 2003), do

not outperform other heuristics when the objective is the minimization of total relative

imbalance. The ACO* algorithm finds results with a much lower ARPI compared to all

heuristics and ACO, GA, GA* metaheuristics. However, one should note that the running

time of the heuristics is negligible when compared with the running time of the

metaheuristics. ACO* determines these results in less than two minutes of CPU time on a

Pentium Dual Core Machine with 4 GB of memory and 120 GB of hard drive using

22

MATLAB R2007b as the programming medium. The CPU time increases with the number of

jobs and the number of machines. When there are two machines, ACO* and GA* determine

the optimal result (i.e., a solution with zero imbalance) almost instantaneously in most of the

runs.

*********************Insert Table 6 **********************

In all experimental settings, the dispatching rules (i.e., h1,..., h9) provide results worse than

the ACO and GA since both metaheuristics utilize the solutions from dispatching rules as

initial solutions. In the 20-job case (Table 6), the performance of metaheuristics is

significantly improved when a local search (2-exchange) is added to improve the solutions.

The ACO* performs the best with an average ARPI value of 0.427, while GA* improves the

solution of GA from 1.280 to 1.103.

*********************Insert Table 7 **********************

When the number of jobs is 40 (Table 7), we have similar observations as in the case of 20

jobs. However, when pt/st=10, in the four- and six-machine cases, GA* outperforms ACO*.

The performance of the metaheuristics in increasing order is ACO* (0.381), GA* (0.464),

ACO (1.004), and GA (1.198).

*********************Insert Table 8 **********************

When the number of jobs is 60 (Table 8), the GA* outperforms ACO* only in the five-

machine case, where processing times are relatively shorter than setup times (i.e., pt/st=0.1).

Generally, the ARPI values for metaheuristics are GA≤ACO≤GA*≤ACO*.

23

When the number of jobs increases to 40 or 60, observations made for the 20-job case still

hold. However, one should note that as the number of jobs increases, on average the solution

quality for heuristics gets closer to the results provided for ACO. However, we still observe

that heuristics h2, h5, h8, and h9 outperform the other heuristics. As a result, the CPT

assignment rule is the best assignment rule when compared with SA or CPT-SA.

Table 9 summarizes the results for the ACO algorithm under different environments.

Generally, when the number of machines increases, the ARPI value increases. When the

number of jobs increases, usually the ARPI decreases. The performance of the ACO

algorithm does not change when the processing time/setup time ratio changes.

************************Insert Table 9 around here*************************

When all problems are analyzed, ACO* performs better when the number of jobs increases.

In addition, the quality of the solution improves as well (i.e., gets closer to the lower bound of

zero). However, when the number of machines increases, the problems become more

difficult. In other words, the ACO algorithm produces results with higher relative imbalance

values. When the pt/st value increases, we cannot observe a direct relation in the quality of

the relative imbalance (Table 9). When the relative performance of each heuristic with

respect to ACO*, the best known solution, is analyzed, it is observed that when the number of

machines increases, the relative performance of heuristics improves. This may be due to the

inability of ACO* to obtain “perfect solutions” (i.e., solutions that have zero imbalance) as

the number of machines increases.

24

Figure 8 presents box plots for ARPI values of different heuristics and metaheuristic

algorithms. When the number of jobs increases, the ARPI value decreases significantly for

h2, h5, and h8. The variability in ARPI increases when the number of jobs increases for h3

and h4. The metaheuristics, particularly ACO* algorithm, are quite robust as a function of

number of jobs. Their performance improve when the processing time/setup time ratio is

high. In general, when the number of machines increases, the ARPI increases for all

heuristics. Furthermore, when the number of machines increases, variability in ARPI values

increases for h2, h5, h8, and the metaheuristics. Note that, in general, h1, h4, and h7, in which

the assignment rule is SA, have the most variability in results and also perform the worst,

while h3, h6, and h9 have mediocre performance. Heuristics h2, h5, and h8, which utilize the

CPT rule as the assignment rule, are the best among all heuristics. The ACO* algorithm, is

better than all heuristics. Note that the SA assignment rule is widely used in practice (Fowler

et al., 2003) for parallel-machine scheduling with setups for the minimum-completion-time

objective. However, it is observed that this rule cannot be used to solve problems with load

balancing in parallel-machine scheduling.

************************Insert Figure 8 around here************************

************************Insert Table 10 around here***********************

When total completion time of the optimal ARPI solutions is analyzed, the dispatching rules

and ACO* generally provide better results than other metaheuristics, since all metaheuristics

were designed to find solutions for the ARPI problem not for the total completion time

problem. In finding the best solution with ACO* and other metaheuristics, we selected the

solution with the best total completion time among all alternative solutions available at that

time (i.e., solutions having the same ARPI value).

25

The quality of the solutions obtained by the heuristics and the ACO algorithm when the

objective is minimization of total completion time is presented in Table 10. When the output

is analyzed, the general trend is as follows: as the number of jobs increases, the total

completion time increases; and when the number of machines increases, the total completion

time usually decreases. Results show that the quality of the solutions provided by the ACO

algorithm has the highest total completion time, but ACO* has improved the total completion

time very significantly. The heuristics that utilize the setup avoidance rule as the assignment

rule provide better results compared to other heuristics. It can also be observed that the

minimization of total relative imbalance and the minimization of total completion time are

not equivalent load balancing policies.

7. CONCLUSIONS

In this study, a mixed-integer mathematical programming model for scheduling of parallel

machines with sequence-dependent setups was proposed, where the objective is to minimize

the average relative imbalance on all machines. Due to the computational complexity

involved in solving the mathematical model, heuristics and metaheuristic algorithms were

developed to generate solutions within a reasonable period of time. Heuristics were also used

to generate the initial set of solutions for the ant colony optimization algorithm and genetic

algorithm. Extensive computational experimentation was performed to test the effectiveness

of the developed methodology over different scenarios. It was observed that the ant colony

optimization algorithm with local search improves the heuristic and metaheuristics solutions

significantly. Furthermore, the most promising heuristics are those that utilize the CPT rule as

the assignment rule. It was observed that the initial order of the assignments does not have a

significant impact on the total relative imbalance. In addition, computational experimentation

showed that the results obtained by the ant colony optimization algorithm with local search

for the PMWBSDS are inferior solutions for the load-balancing problem defined in Yildirim

26

et al. (2007), where the objective is the minimization of the total completion time in the

presence of load-balancing constraints.

A direct extension of this research would be to have a multi-objective mathematical

model in which both minimization of total completion time and minimization of imbalance

are two objectives to be considered. A multi-objective genetic algorithm approach could be

developed to solve this problem as part of future research. Another extension would be to

determine a lower bound to test the effectiveness of the ACO algorithm. A more detailed

experiment to determine if there is a clear pattern between the parameters of the experimental

design and the objective could be designed.

References
1. Allahverdi, A., Gupta, J. N. D., and Aldowaisan, T. A review of scheduling research

involving setup consideration. International Journal of Management Science. 1999. 27,
pp. 219-239.

2. Aubry, A., Rossi, A., Espinouse, M.L., and Jacomino, M. Minimizing setup costs for
parallel multi-purpose machines under load-balancing constraint. European Journal of
Operations Research. 2008. 187, pp. 1115-1125.

3. Chen J. F. Minimization of maximum tardiness on unrelated parallel machines with
process restrictions and setups. International Journal of Advanced Manufacturing
Technology. 2006. 29, pp. 557-563.

4. Dietrich, B. L., and Escudero, L. F. On solving a 0-1 model for workload allocation on
parallel unrelated machines with setups. Proceedings of Third ORSA/TIMS Conference on
Flexible Manufacturing Systems: Operations Research Models and Applications. 1989.
pp. 181-186.

5. Dorigo, M., and Gambardella, L.M. Ant colony system: A cooperative learning approach
to the traveling salesman problem. IEEE Transactions on Evolutionary Computation.
1997. 1(1), pp. 53–66.

6. Dorigo, M., Maniezzo, V., and Colorni, A. Ant System: Optimization by a colony of
cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics – Part B.
1996. 26(1), pp. 29–41.

7. Duman, E., Yildirim, M. B., and Alkaya, A. F. Scheduling continuous aluminum casting
lines. International Journal of Production Research. 2008. 46 (20), pp. 5701-5718

8. Fowler, J. W., Horng, S. M., and Cochran, J. K. A hybridized genetic algorithm to solve
parallel machine scheduling problems with sequence dependent setups. International
Journal of Industrial Engineering. 2003. 10(3), pp. 232-243.

9. Gascon, A. and Leachman, R. C. A dynamic programming solution to the dynamic,
multi-item, single-machine scheduling problem. Operations Research. 1998. 36 (1), pp.
50-56.

10. Hillier, M. S., and Brandeau, M. L. Cost minimization and workload balancing in printed
circuit board assembly. IIE Transactions. 2001. 33 (7), pp. 547-557.

27

11. Ip, W.H., Li, Y., Man, K.F., Tang, K.S.. Multi-product planning and scheduling using
genetic algorithm approach. Computers & Industrial Engineering. 2000. Vol. 38(2), pp.
283-296.

12. Pinedo, M. Scheduling: Theory, Algorithms and Systems. Springer Series in Operations
Research and Financial Engineering, 1995.

13. Rajakumar, S., Arunachalam, V. P., and Selladurai, V. Workflow balancing strategies in
parallel machine scheduling. International Journal of Advanced Manufacturing
Technology. 2004. 23, pp. 366-374.

14. Rajakumar, S., Arunachalam, V. P., and Selladurai, V. Workflow balancing in parallel
machine scheduling with precedence constraints using genetic algorithm. Journal of
Manufacturing Technology Management. 2006. 17(2), pp. 239-254.

15. Rajakumar, S., Arunachalam, V. P., and Selladurai, V. Workflow balancing in parallel
machine scheduling using genetic algorithm. International Journal of Advanced
Manufacturing Technology. 2007. 33(11-12), pp. 1212-1221.

16. Reeves, C.R. Modern heuristic techniques for combinatorial problems. 1995. McGraw-
Hill Book Company Inc., Europe.

17. Tahar, D. N., Yalaoui, F., Chu, C., and Amodeo, L. A linear programming approach for
identical parallel machine scheduling with job splitting and sequence-dependent setup
times. International Journal of Production Economics. 2006. 99 (1-2), pp. 63-73.

18. Tamaki H., Hasegawa Y., Kozasa J., and Araki M. Application of search methods to
scheduling problem in plastics forming plant: A binary representation approach.
Proceedings of the 32nd IEEE Conference on Decision and Control. 1993. pp. 3845-
3850.

19. Yalaoui, F., and Chu, C. An efficient heuristic approach for parallel machine scheduling
with job splitting and sequence-dependent setup times. IIE Transactions. 2003. 35(2), pp.
183-190.

20. Yamamoto, K. and Naito, S. A study on schema preservation by crossover. Systems and
Computers in Japan. 2002. 33(2), pp. 64-76.

21. Yildirim, M. B., Duman, E., Krishna, K., and Senniappan, K. Parallel machine
scheduling with load balancing and sequence dependent setups. International Journal of
Operations Research. 2007. 4(1), pp. 1-8.

28

Figure 1. Network representation of load-balancing problem on ACO.

29

Figure 2. Tours for Ant 1 and Ant 2 in ACO.

30

Figure 3. Pseudocode for ACO algorithm.

Ant Colony Optimization Algorithm
STEP 0: Initialize:

a) Set iteration counter t=0.
b) Set pheromone level on all edges to 0.

STEP 1: Construct solutions for each ant  (i.e., for 1  to ):

 Generate a tour by adding an edge from tabu  using the following:
a) With probability q, the node with the maximum pheromone level.
b) With probability d, a discrete probability distribution with edge

probability ((,),(', '))Pr ()i k i k t .

c) With probability r, random selection.
STEP 2: Local search (Optional)
STEP 3: Evaluate the fitness of each solution.
STEP 4: Keep the best solutions in a list. If not optimal (i.e., ARPI is not zero) and t

< MaxIterationCount, then update the pheromone levels on the network via
evaporation and incremental pheromone update processes.

STEP 5: Set t=t+1. Go to Step 1.

31

Figure 4. Pseudocode for the genetic algorithm.

Genetic Algorithm
STEP 0: Generate an initial population
STEP 1: Evaluate the fitness value of the chromosomes
STEP 2: Perform selection operation and give those individual that have better

fitness values a more chance to survive in the next generation.
STEP 3: Perform crossover and mutation operations according to probabilities.
STEP 4: Perform local search (optional)
STEP 5: Repeat steps 1, 2, 3 and 4 until the GA is run for the predetermined number

of generations or an optimal solution with zero ARPI value is found
STEP 5: Select the best chromosome.

32

 Machine 1 Machine 2 Machine 3

Jobs 5 8 1 4 10 3 7 6 9 2

Figure 5. Representation of a chromosome

33

Offspring1 1 2 5 4 6 8 10 3 7 9

P1 5 8 1 4 10 3 7 6 9 2

P2 1 2 5 4 6 10 8 7 3 9

Offspring2 5 8 1 4 10 2 6 7 3 9

Figure 6. Crossover operation

34

Offspring 1 2 5 4 6 8 10 3 7 9

Mutated
Offspring

1 2 4 6 8 5 10 3 7 9

Figure 7. Mutation operator

35

Figure 8. Average relative percentage imbalance values for different heuristics.

GA*

GA

ACO*

ACO

H9

H8

H7

H6

H5

H4

H3

H2

H1

80

60

40

20

0

36

Table 1: Heuristics to minimize load balance in parallel machines with sequence-dependent
setups

Assignment Rule

Ordering Rule SA CPT CPT- SA

RN
h1

RN-SA
h2

RN-CPT
h3

RN- CPT- SA

LPT
h4

LPT-SA
h5

LPT-CPT
h6

LPT- CPT- SA

SPT
h7

SPT-SA
h8

SPT-CPT
h9

SPT- CPT- SA

37

Table 2: Parameters for generation of processing and setup times

pt/st Ratio Processing Time Setup Time

High 0.1=15/150 U[0, 20]+5 U[0, 7]*43
Moderate 1.0= 50/50 U[0, 20]+40 U[0, 7]*15

Low 10 = 70/7 U[0, 20]+60 U[0, 7]*2

38

Table 3: Parameter optimization experimentation design for ACO algorithm

p q (best) d (probabilistic) r (random) = (1-(q+d))

(0.1, 0.3, 0.5) 0.8 (0.1, 0.2) (0.0, 0.1)
(0.1, 0.3, 0.5) 0.6 (0.1, 0.2, 0.3, 0.4) (0.0, 0.1, 0.2, 0.3)
(0.1, 0.3, 0.5) 0.4 (0.1, 0.2, 0.3, 0.4) (0.2, 0.3, 0.4,0.5)

(0.1, 0.3, 0.5) 0.2 (0.1, 0.2, 0.3, 0.4) (0.4, 0.5, 0.6, 0.7)

39

Table 4: Optimal (p, q, d, r) parameter combination for ACO algorithm

Machines
Jobs

20 40 60

2M (0.5, 0.8, 0.1, 0.1) All Combinations Optimum All Combinations Optimum

3M (0.5, 0.8, 0.1, 0.1) (0.5, 0.6, 0.1, 0.3) (0.3, 0.8, 0.2, 0.0)

4M (0.5, 0.8, 0.1, 0.1) (0.3, 0.2, 0.4, 0.4) (0.1, 0.2, 0.1, 0.7)

5M (0.1, 0.8, 0.1, 0.1) (0.5, 0.8, 0.1, 0.1) (0.3, 0.8, 0.1, 0.1)

6M (0.1, 0.8, 0.1, 0.1) (0.3, 0.6, 0.2, 0.2) (0.3, 0.4, 0.3, 0.3)

40

Table 5: Optimal (Pc, Pm) parameter combination for GA algorithm

Machines

Jobs

20 40 60

2M (0.7, 0.01) (0.9, 0.01) (0.9, 0.01)

3M (0.9, 0.01) (0.9, 0.01) (0.9, 0.01)

4M (0.7, 0.01) (0.9, 0.05) (0.9, 0.01)

5M (0.9, 0.05) (0.9, 0.01) (0.9, 0.05)

6M (0.9, 0.05) (0.9, 0.05) (0.9, 0.05)

Table 6: ARPI values when |J|=20

pt/st M h1 h2 h3 h4 h5 h6 h7 h8 h9 ACO ACO* GA GA*

0.1

2 11.495 3.063 9.562 5.169 1.182 14.130 20.124 4.315 15.023 0.094 0.008 0.122 0.033

3 27.037 3.761 12.192 49.916 4.200 5.100 30.934 14.505 18.721 0.158 0.011 0.787 0.595

4 51.156 9.513 14.538 55.901 9.245 16.356 47.129 6.212 9.608 0.762 0.139 2.095 1.114

5 64.971 16.425 16.439 56.785 18.915 12.645 50.683 7.982 15.574 1.933 0.597 3.607 1.753

6 70.863 18.356 18.341 64.014 26.340 32.287 59.425 24.997 13.614 4.069 0.824 6.400 2.567

1

2 43.815 5.322 16.616 17.090 0.781 9.924 20.483 2.641 10.327 0.017 0.006 0.087 0.025

3 33.025 3.319 8.782 39.073 9.293 13.409 27.547 1.263 17.602 0.194 0.043 0.720 0.362

4 41.263 16.286 16.675 31.933 15.845 11.750 40.511 11.986 8.662 0.623 0.157 3.001 0.626

5 25.939 13.584 18.985 38.413 19.373 27.655 21.323 11.505 9.389 1.324 0.427 3.827 1.789

6 39.092 16.681 16.711 31.248 15.502 16.695 41.210 14.591 16.934 2.571 0.616 4.088 1.560

10

2 6.245 0.501 10.888 24.287 0.467 16.977 21.989 0.227 14.730 0.053 0.031 0.064 0.061

3 4.352 6.090 17.285 17.553 5.111 18.562 38.728 4.470 4.362 0.065 0.021 0.617 0.046

4 32.061 4.057 17.086 38.505 1.529 14.801 49.011 1.891 2.837 0.213 0.064 0.448 0.091

5 33.418 8.436 6.578 35.242 5.426 19.376 59.364 1.960 17.119 0.310 0.032 0.647 0.176

6 45.134 15.445 14.091 54.044 17.526 19.848 66.210 12.953 16.152 6.884 3.466 7.873 5.771

Mean 35.325 9.389 14.318 37.278 10.049 16.634 39.645 8.100 12.710 1.285 0.429 2.292 1.105

42

Table 7: ARPI values when |J|=40

pt/st M h1 h2 h3 h4 h5 h6 h7 h8 h9 ACO ACO* GA GA*

0.1

2 21.728 1.960 2.624 11.122 0.718 6.419 13.077 3.629 10.819 0.006 0.005 0.040 0.007

3 17.628 2.383 12.549 14.878 2.361 8.530 31.798 4.498 3.006 0.128 0.025 0.471 0.053

4 40.955 5.194 11.740 34.049 6.203 10.338 37.988 6.567 10.879 0.902 0.087 1.021 0.290

5 33.556 6.097 11.008 44.260 10.368 13.977 29.731 11.487 9.231 1.952 0.404 2.608 0.520

6 26.817 13.708 10.617 50.657 4.824 16.462 44.668 17.074 10.861 2.153 1.089 2.549 1.631

1

2 23.233 1.951 13.149 8.641 0.276 9.924 7.308 3.304 0.211 0.086 0.004 0.017 0.006

3 24.523 4.829 6.496 21.458 1.837 10.428 33.490 3.676 8.499 0.106 0.023 0.173 0.069

4 15.270 10.640 14.398 15.904 6.386 8.464 29.028 4.927 12.262 0.856 0.135 0.514 0.204

5 36.448 8.206 15.917 24.939 9.121 8.427 9.743 2.530 7.297 0.868 0.124 0.996 0.440

6 37.265 11.709 17.645 23.752 16.143 10.635 41.562 5.844 14.594 3.748 1.036 4.338 1.665

10

2 7.809 0.299 3.747 31.721 0.927 0.352 16.358 0.972 12.296 0.004 0.011 0.095 0.024

3 16.056 3.145 15.924 16.554 3.629 17.231 19.784 0.276 14.790 0.084 0.034 0.178 0.039

4 28.927 1.402 16.228 23.057 0.732 12.058 27.882 1.197 15.562 0.173 0.065 0.353 0.083

5 38.891 3.696 10.773 32.598 2.907 10.004 17.863 0.965 15.574 0.322 0.075 0.823 0.110

6 34.556 6.373 14.119 40.342 6.393 16.047 18.144 4.662 12.621 3.741 2.680 3.800 1.973

Mean 26.911 5.439 11.796 26.262 4.855 10.620 25.228 4.774 10.567 1.009 0.387 1.198 0.474

43

Table 8: ARPI values when |J|=60

pt/st M h1 h2 h3 h4 h5 h6 h7 h8 h9 ACO ACO* GA GA*

0.1

2 22.466 0.595 14.545 26.500 0.141 13.379 29.935 1.672 7.631 0.042 0.007 0.040 0.009

3 21.545 2.406 14.552 39.478 3.186 7.993 40.359 1.712 13.592 0.097 0.009 0.220 0.034

4 26.794 4.540 12.825 41.497 2.804 7.470 29.940 1.875 9.167 0.323 0.098 0.389 0.132

5 28.358 3.112 12.775 43.979 4.933 9.595 28.706 6.366 13.495 1.718 0.659 1.019 0.343

6 31.914 9.259 12.878 41.159 5.692 13.008 49.726 7.076 11.502 3.519 0.454 3.283 0.483

1

2 14.595 0.109 2.788 22.428 1.236 2.617 1.715 0.378 9.968 0.022 0.008 0.022 0.009

3 23.637 1.761 2.831 33.118 2.892 6.025 12.870 2.590 5.903 0.101 0.021 0.116 0.059

4 24.800 1.789 6.994 15.867 5.119 10.650 44.746 1.443 11.537 0.638 0.084 0.260 0.157

5 38.764 1.976 14.831 42.295 6.461 16.691 38.660 2.754 15.414 1.061 0.390 1.242 0.563

6 46.006 4.717 12.028 51.472 5.787 9.966 34.218 4.964 8.391 1.562 0.347 1.603 0.455

10

2 5.308 0.529 1.926 20.816 1.318 14.409 0.635 1.380 0.673 0.027 0.007 0.019 0.013

3 17.963 2.644 2.991 18.209 0.853 10.854 28.907 0.666 11.350 0.064 0.005 0.182 0.016

4 21.414 2.629 9.862 23.205 1.842 11.923 12.708 1.346 14.544 0.456 0.011 0.578 0.022

5 34.163 1.584 12.799 17.460 1.299 10.060 25.469 1.097 13.225 0.217 0.056 0.340 0.084

6 30.414 3.091 11.406 31.363 2.206 9.349 37.532 2.635 14.734 1.036 0.276 1.164 0.453

Mean 25.876 2.716 9.735 31.256 3.051 10.266 27.742 2.530 10.742 0.725 0.162 0.698 0.189

44

Table 9: Performance of ACO algorithm under different conditions

pt/st 0.1 1 10
job\M 2 3 4 5 6 2 3 4 5 6 2 3 4 5 6

20 0.008 0.011 0.139 0.597 0.824 0.006 0.043 0.157 0.427 0.616 0.031 0.021 0.064 0.032 3.466

40 0.005 0.025 0.087 0.404 1.089 0.004 0.023 0.135 0.124 1.036 0.011 0.034 0.065 0.075 2.680

60 0.007 0.009 0.098 0.659 0.454 0.008 0.021 0.084 0.390 0.347 0.007 0.005 0.011 0.056 0.276

45

Table 10: Total completion time for different heuristics

Jobs M h1 h2 h3 h4 h5 h6 h7 h8 h9 ACO ACO* GA GA*

20

2 1498 1489 1528 1483 1560 1484 1455 1485 1469 1617 1444 1553 1564
3 1428 1505 1487 1432 1566 1487 1428 1473 1501 1533 1456 1540 1518
4 1449 1482 1470 1433 1545 1469 1419 1476 1473 1538 1449 1544 1529
5 1435 1472 1463 1429 1568 1483 1406 1535 1472 1510 1471 1543 1527
6 1410 1444 1475 1453 1536 1467 1404 1499 1486 1504 1527 1519 1524

40

2 2942 3069 2958 2950 2974 2935 2875 2996 2982 2983 2779 3019 3020
3 2826 3055 2916 2943 3044 2861 2840 2940 2956 3034 2781 3031 3033
4 2844 2965 2874 2836 2994 2865 2822 2971 2870 3069 2775 3042 3031
5 2824 2938 2915 2776 2929 2831 2806 3031 2902 2995 2776 3021 3046
6 2729 3019 2918 2771 3069 2942 2840 3034 2868 3009 2778 3002 3026

60

2 4358 4495 4417 4488 4564 4426 4304 4594 4430 4576 4207 4576 4580
3 4386 4427 4372 4445 4684 4317 4350 4435 4422 4511 4205 4596 4580
4 4354 4465 4483 4261 4470 4396 4296 4570 4410 4665 4202 4569 4595
5 4282 4582 4396 4184 4397 4259 4280 4590 4332 4509 4201 4587 4607
6 4259 4636 4340 4322 4591 4396 4377 4439 4284 4516 4196 4558 4600

