Show simple item record

dc.contributor.authorJang, Changrim
dc.contributor.authorParker, Phillip E.
dc.date.accessioned2012-06-20T20:57:53Z
dc.date.available2012-06-20T20:57:53Z
dc.date.issued2005
dc.identifier.citationJang, C. and P. E. Parker (2005). Conjugate loci of pseudoriemannian 2-step nilpotent Lie groups with nondegenerate center. Annals of Global Analysis and Geometry 28: 1–18.en_US
dc.identifier.issn0232-704X
dc.identifier.issn1572-9060
dc.identifier.urihttp://hdl.handle.net/10057/5196
dc.identifier.urihttp://dx.doi.org/10.1007/s10455-005-5430-8
dc.identifier.urihttp://arxiv.org/pdf/math/0302029v4.pdf
dc.descriptionClick on the DOI link below to access the article (may not be free).en_US
dc.description.abstractWe determine the complete conjugate locus along all geodesics parallel or perpendicular to the center (Theorem 2.3). When the center is one-dimensional we obtain formulas in all cases (Theorem 2.5), and when a certain operator is also diagonalizable these formulas become completely explicit (Corollary 2.7). These yield some new information about the smoothness of the pseudoriemannian conjugate locus. We also obtain the multiplicities of all conjugate points.en_US
dc.language.isoen_USen_US
dc.publisherSpringeren_US
dc.relation.ispartofseriesAnnals of Global Analysis and Geometry;v.28 no.1
dc.titleConjugate loci of pseudo-Riemannian 2-step nilpotent Lie groups with nondegenerate centeren_US
dc.typeArticleen_US
dc.description.versionPeer reviewed
dc.rights.holder© 2005, Springer Netherlands


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record