Show simple item record

dc.contributor.authorYoung, Sarah
dc.contributor.authorMolesworth, Samuel
dc.contributor.authorDain, Ryan P.
dc.contributor.authorOomens, Jos
dc.contributor.authorSteill, Jeffrey D.
dc.contributor.authorGroenewold, Gary S.
dc.contributor.authorVan Stipdonk, Michael J.
dc.date.accessioned2012-09-19T21:11:30Z
dc.date.available2012-09-19T21:11:30Z
dc.date.issued2009-05-01
dc.identifier.urihttp://hdl.handle.net/10057/5296
dc.descriptionFirst place winner of poster presentations in the Natural Science section at the 9th Annual Undergraduate Research and Creative Activity Forum (URCAF) held at the Eugene Hughes Metropolitan Complex , Wichita State University, May 1, 2009en_US
dc.description.abstractIn this study the metal-binding tendency and fragmentation patterns of phosphoserine and a series of model phosphopeptides was investigated. The goal was to elucidate the fragmentation patterns for the phosphopeptides, and whether the dissociation reactions are sensitive or dependent on the choice of cation. To gain a better picture of gas-phase conformation, infrared multiple photon dissociation (IRMPD) was used to determine the most probable structures for potassium and sodium-cationized phosphoserine. Structure assignment was made by comparing experimental IRMPD spectra to those predicted by density functional theory (DFT) calculations. ESI, tandem MS with CID was performed using a ThermoFinnigan LCQDeca quadrupole ion trap mass spectrometer with helium as the bath/collision gas. DFT calculations to support IRMPD experiments were performed at the B3LYP/6-311++G(3df,2pd) level of theory (scaled by a factor of 0.98) to generate probable conformations of potassium and sodium cationized phosphoserine. For CID studies, phosphoserine, alanine-phosphoserine-glycine, phosphoserine-valine-alanine-leucine, alaninephosphoserine-valine-leucine and leucine-alanine-phosphoserine-valine were examined. The metal cations used included lithium, sodium, potassium, calcium, zinc and silver. For the IMRPD study, several minima for K and Na-cationized phosphoserine were identified. The experimental IRMPD spectra for the Na and Kcationized phosphoserine were similar, exhibiting peak characteristic both of amino acids and phosphates. The best agreement between experimental and theoretical spectra is achieved by combining the absorptions predicted for the two lowest energy minima, both of which feature coordination of the metal cation by the carbonyl C=O and phosphate P=O groups and the C-O-P ester group.en_US
dc.description.sponsorshipOffice of Research Administration, Fairmount College of Liberal Arts and Sciences, College of Education, College of Engineering, College of Fine Arts, University Libraries, Emory Lindquist Honors Programen_US
dc.language.isoen_USen_US
dc.publisherWichita State Universityen_US
dc.relation.ispartofseriesURCAF;
dc.relation.ispartofseriesv.9;
dc.titleStructure and fragmentation behavior of metal-cationized phosphopeptidesen_US
dc.typeAbstracten_US


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record