Show simple item record

dc.contributor.authorCarper, W. Robert
dc.contributor.authorWahlbeck, Phillip G.
dc.contributor.authorGriffiths, Trevor R.
dc.date.accessioned2012-06-14T16:21:48Z
dc.date.available2012-06-14T16:21:48Z
dc.date.issued2012-05-10
dc.identifier.citationCarper W.R., Wahlbeck P.G., and Griffiths T.R. 2012. "DFT models of molecular species in carbonate molten salts". Journal of Physical Chemistry B. 116 (18): 5559-5567.en_US
dc.identifier.issn1520-6106
dc.identifier.urihttp://hdl.handle.net/10057/5122
dc.identifier.uridx.doi.org/10.1021/jp3016694
dc.descriptionClick on the DOI link below to access the article (may not be free).en_US
dc.description.abstractRaman spectra of high temperature carbonate melts are correlated with carbonate species modeled at 923 K using B3LYP/(6-311+G(2d,p)) density functional calculations. Species that are theoretically stable at 923 K include O2-, O-2(-), O-2(2-), CO32-, C2O62-, CO4-, CO42-, CO44-, CO52-, KCO4-, LiCO4-, KO2-, LiO2-, NaO2-, KO2, LiO2, NaO2, KCO3-, LiCO3-, and NaCO3-. Triangular, linear, and bent forms are theoretically possible for KO2- and NaO2-. Triangular and linear forms may exist for LiO2-. Linear and triangular versions are theoretically possible for LiO2- and KO2. A triangular version of NaO2 may exist. The correlation between measured and theoretical Raman spectra indicate that monovalent cations are to be included in several of the species that produce Raman spectra.en_US
dc.language.isoen_USen_US
dc.publisherAmerican Chemical Associationen_US
dc.relation.ispartofseriesJournal of Physical Chemistry B;2012, v.116, no.18
dc.titleDFT models of molecular species in carbonate molten saltsen_US
dc.typeArticleen_US
dc.description.versionPeer reviewed
dc.rights.holderCopyright © 2012 American Chemical Society


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record