Archaeal diversity at the great salt plains of Oklahoma described by cultivation and molecular analyses

No Thumbnail Available
Issue Date
2009-10
Embargo End Date
Authors
Caton, Todd M.
Santos-Caton, Ingrid R.
Witte, Lisa R.
Schneegurt, Mark A.
Advisor
Citation

Microbial ecology. 2009 Oct; 58(3): 519-28.

Abstract

The Great Salt Plains of Oklahoma is a natural inland terrestrial hypersaline environment that forms evaporite crusts of mainly NaCl. Previous work described the bacterial community through the characterization of 105 isolates from 46 phylotypes. The current report describes the archaeal community through both microbial isolation and culture-independent techniques. Nineteen distinct archaea were isolated, and ten were characterized phenetically. Included were isolates phylogenetically related to Haloarcula, Haloferax, Halorubrum, Haloterrigena, and Natrinema. The isolates were aerobic, non-motile, Gram-negative organisms and exhibited little capacity for fermentation. All of the isolates were halophilic, with most requiring at least 15% salinity for growth, and all grew at 30% salinity. The isolates were mainly mesothermic and could grow at alkaline pH (8.5). A 16S rRNA gene library was generated by polymerase chain reaction amplification of direct soil DNA extracts, and 200 clones were sequenced and analyzed. At 99% and 94% sequence identity, 36 and 19 operational taxonomic units (OTUs) were detected, respectively, while 53 and 22 OTUs were estimated by Chao1, respectively. Coverage was relatively high (100% and 59% at 89% and 99% sequence identity, respectively), and the Shannon Index was 3.01 at 99% sequence identity, comparable to or somewhat lower than hypersaline habitats previously studied. Only sequences from Euryarchaeota in the Halobacteriales were detected, and the strength of matches to known sequences was generally low, most near 90% sequence identity. Large clusters were observed that are related to Haloarcula and Halorubrum. More than two-thirds of the sequences were in clusters that did not have close relatives reported in public databases.

Table of Content
Description
Click on the DOI link below to access the article (may not be free).
publication.page.dc.relation.uri
DOI