Show simple item record

dc.contributor.authorParker, Phillip E.
dc.contributor.authorDel Riego, L.
dc.date.accessioned2006-04-26T22:10:44Z
dc.date.available2006-04-26T22:10:44Z
dc.date.issued2004-08-28
dc.identifier.citationParker, Phillip E. and L. Del Riego. 2005. Geometry of nonlinear connections. Nonlinear Anal. 63, e501-e510.en
dc.identifier.issn1468-1218
dc.identifier.urihttp://hdl.handle.net/10057/121
dc.description.abstractWe show that locally diffeomorphic exponential maps can be defined for any second-order differential equation, and give a (possibly nonlinear) covariant derivative for any (possibly nonlinear) connection. We introduce vertically homogeneous connections as the natural correspondents of homogeneous second-order differential equations. We provide significant support for the prospect of studying nonlinear connections via certain, closely associated secondorder differential equations. One of the most important is our generalized Ambrose-Palais-Singer correspondence.en
dc.description.sponsorshipPartially supported by CONACYT grant 26594-E.en
dc.format.extent180579 bytes
dc.format.mimetypeapplication/pdf
dc.language.isoen_USen
dc.publisherElsevier Science B.V., Amsterdamen
dc.relation.ispartofseriesNonlinear analysisen
dc.relation.ispartofseriesv. 63 (2005)en
dc.subjectDifferential geometryen
dc.titleGeometry of nonlinear connectionsen
dc.typeArticleen
dc.description.versionPeer reviewed


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record