Geometry of nonlinear connections

SOAR Repository

Show simple item record

dc.contributor.author Parker, Phillip E.
dc.contributor.author Del Riego, L.
dc.date.accessioned 2006-04-26T22:10:44Z
dc.date.available 2006-04-26T22:10:44Z
dc.date.issued 2004-08-28
dc.identifier.citation Parker, Phillip E. and L. Del Riego. 2005. Geometry of nonlinear connections. Nonlinear Anal. 63, e501-e510. en
dc.identifier.issn 1468-1218
dc.identifier.uri http://hdl.handle.net/10057/121
dc.description.abstract We show that locally diffeomorphic exponential maps can be defined for any second-order differential equation, and give a (possibly nonlinear) covariant derivative for any (possibly nonlinear) connection. We introduce vertically homogeneous connections as the natural correspondents of homogeneous second-order differential equations. We provide significant support for the prospect of studying nonlinear connections via certain, closely associated secondorder differential equations. One of the most important is our generalized Ambrose-Palais-Singer correspondence. en
dc.description.sponsorship Partially supported by CONACYT grant 26594-E. en
dc.format.extent 180579 bytes
dc.format.mimetype application/pdf
dc.language.iso en_US en
dc.publisher Elsevier Science B.V., Amsterdam en
dc.relation.ispartofseries Nonlinear analysis en
dc.relation.ispartofseries v. 63 (2005) en
dc.subject Differential geometry en
dc.title Geometry of nonlinear connections en
dc.type Article en
dc.description.version Peer reviewed

Files in this item

This item appears in the following Collection(s)

Show simple item record

Search SOAR

Advanced Search


My Account